化工原理课后题答案解析部分.docx
《化工原理课后题答案解析部分.docx》由会员分享,可在线阅读,更多相关《化工原理课后题答案解析部分.docx(17页珍藏版)》请在冰豆网上搜索。
化工原理课后题答案解析部分
化工原理第二版
第1章蒸馏
1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。
苯和甲苯的饱和蒸汽压数据见例1-1附表。
t(℃)80.1859095100105
x0.9620.7480.5520.3860.2360.11
解:
利用拉乌尔定律计算气液平衡数据
查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压PB*,PA*,由于总压
P=99kPa,则由x=(P-PB*)/(PA*-PB*)可得出液相组成,这样就可以得到一组绘平衡t-x图数据。
以t=80.1℃为例x=(99-40)/(101.33-40)=0.962
同理得到其他温度下液相组成如下表
根据表中数据绘出饱和液体线即泡点线
由图可得出当x=0.5时,相应的温度为92℃
2.正戊烷(C5H12)和正己烷(C6H14)的饱和蒸汽压数据列于本题附表,试求P=13.3kPa下该溶液的平衡数据。
温度C5H12223.1233.0244.0251.0260.6275.1291.7309.3
KC6H14248.2259.1276.9279.0289.0304.8322.8341.9
饱和蒸汽压(kPa)1.32.65.38.013.326.653.2101.3
解:
根据附表数据得出相同温度下C5H12(A)和C6H14(B)的饱和蒸汽压
以t=248.2℃时为例,当t=248.2℃时PB*=1.3kPa
查得PA*=6.843kPa
得到其他温度下A¸B的饱和蒸汽压如下表
t(℃)248251259.1260.6275.1276.9279289291.7304.8309.3
PA*(kPa)6.8438.00012.47213.30026.60029.48433.42548.87353.20089.000101.300
PB*(kPa)1.3001.6342.6002.8265.0275.3008.00013.30015.69426.60033.250
利用拉乌尔定律计算平衡数据
平衡液相组成以260.6℃时为例
当t=260.6℃时x=(P-PB*)/(PA*-PB*)
=(13.3-2.826)/(13.3-2.826)=1
平衡气相组成以260.6℃为例
当t=260.6℃时y=PA*x/P=13.3×1/13.3=1
同理得出其他温度下平衡气液相组成列表如下
t(℃)260.6275.1276.9279289
x10.38350.33080.02850
y10.7670.7330.5240
根据平衡数据绘出t-x-y曲线
3.利用习题2的数据,计算:
⑴相对挥发度;⑵在平均相对挥发度下的x-y数据,并与习题2的结果相比较。
解:
①计算平均相对挥发度
理想溶液相对挥发度α=PA*/PB*计算出各温度下的相对挥发度:
t(℃)248.0251.0259.1260.6275.1276.9279.0289.0291.7304.8309.3
α----5.2915.5634.178----
取275.1℃和279℃时的α值做平均αm=(5.291+4.178)/2=4.730
②按习题2的x数据计算平衡气相组成y的值
当x=0.3835时,
y=4.73×0.3835/[1+(4.73-1)×0.3835]=0.746
同理得到其他y值列表如下
t(℃)260.6275.1276.9279289
α5.2915.5634.178
x10.38350.33080.20850
y10.7460.7000.5550
③作出新的t-x-y'曲线和原先的t-x-y曲线如图
4.在常压下将某原料液组成为0.6(易挥发组分的摩尔)的两组溶液分别进行简单蒸馏和平衡蒸馏,若汽化率为1/3,试求两种情况下的斧液和馏出液组成。
假设在操作范围内气液平衡关系可表示为y=0.46x+0.549
解:
①简单蒸馏
由ln(W/F)=∫xxFdx/(y-x)以及气液平衡关系y=0.46x+0.549
得ln(W/F)=∫xxFdx/(0.549-0.54x)=0.54ln[(0.549-0.54xF)/(0.549-0.54x)]
∵汽化率1-q=1/3则q=2/3即W/F=2/3
∴ln(2/3)=0.54ln[(0.549-0.54×0.6)/(0.549-0.54x)]解得
x=0.498代入平衡关系式y=0.46x+0.549得
y=0.804
②平衡蒸馏
由物料衡算FxF=Wx+Dy
D+W=F将W/F=2/3代入得到
xF=2x/3+y/3代入平衡关系式得
x=0.509再次代入平衡关系式得y=0.783
5.在连续精馏塔中分离由二硫化碳和四硫化碳所组成的混合液。
已知原料液流量F为4000kg/h,组成xF为0.3(二硫化碳的质量分率,下同)。
若要求釜液组成xW不大于0.05,馏出液回收率为88%。
试求馏出液的流量和组分,分别以摩尔流量和摩尔分率表示。
解:
馏出回收率=DxD/FxF=88%得馏出液的质量流量
DxD=FxF88%=4000×0.3×0.88=1056kg/h
结合物料衡算FxF=WxW+DxD
D+W=F得xD=0.943
馏出液的摩尔流量1056/(76×0.943)=14.7kmol/h
以摩尔分率表示馏出液组成xD=(0.943/76)/[(0.943/76)+(0.057/154)]
=0.97
6.在常压操作的连续精馏塔中分离喊甲醇0.4与说.6(均为摩尔分率)的溶液,试求以下各种进料状况下的q值。
(1)进料温度40℃;
(2)泡点进料;(3)饱和蒸汽进料。
常压下甲醇-水溶液的平衡数据列于本题附表中。
温度t液相中甲醇的气相中甲醇的温度t液相中甲醇的气相中甲醇的
℃摩尔分率摩尔分率℃摩尔分率摩尔分率
1000.00.075.30.400.729
96.40.020.13473.10.500.779
93.50.040.23471.20.600.825
91.20.060.30469.30.700.870
89.30.080.36567.60.800.915
87.70.100.41866.00.900.958
84.40.150.51765.00.950.979
81.70.200.57964.01.01.0
78.00.300.665
解:
(1)进料温度40℃
75.3℃时,甲醇的汽化潜热r1=825kJ/kg
水蒸汽的汽化潜热r2=2313.6kJ/kg
57.6℃时,甲醇的比热CV1=2.784kJ/(kg·℃)
水蒸汽的比热CV2=4.178kJ/(kg·℃)
查附表给出数据当xA=0.4时,平衡温度t=75.3℃
∴40℃进料为冷液体进料
即将1mol进料变成饱和蒸汽所需热量包括两部分
一部分是将40℃冷液体变成饱和液体的热量Q1,二是将75.3℃饱和液体变成气体所需要的汽化潜热Q2,即q=(Q1+Q2)/Q2=1+(Q1/Q2)
Q1=0.4×32×2.784×(75.3-40)=2850.748kJ/kg
Q2=825×0.4×32+2313.6×0.6×18=35546.88kJ/kg
∴q=1+(Q1/Q2)=1.08
(2)泡点进料
泡点进料即为饱和液体进料∴q=1
(3)饱和蒸汽进料q=0
7.对习题6中的溶液,若原料液流量为100kmol/h,馏出液组成为0.95,釜液组成为0.04(以上均为易挥发组分的摩尔分率),回流比为2.5,试求产品的流量,精馏段的下降液体流量和提馏段的上升蒸汽流量。
假设塔内气液相均为恒摩尔流。
解:
①产品的流量
由物料衡算FxF=WxW+DxD
D+W=F代入数据得
W=60.44kmol/h
∴产品流量D=100–60.44=39.56kmol/h
②精馏段的下降液体流量L
L=DR=2.5×39.56=98.9kmol/h
③提馏段的上升蒸汽流量V'
40℃进料q=1.08
V=V'+(1-q)F=D(1+R)=138.46kmol/h
∴V'=146.46kmol/h
8.某连续精馏操作中,已知精馏段y=0.723x+0.263;提馏段y=1.25x–0.0187
若原料液于露点温度下进入精馏塔中,试求原料液,馏出液和釜残液的组成及回流比。
解:
露点进料q=0
即精馏段y=0.723x+0.263过(xD,xD)∴xD=0.949
提馏段y=1.25x–0.0187过(xW,xW)∴xW=0.0748
精馏段与y轴交于[0,xD/(R+1)]即xD/(R+1)=0.263
∴R=2.61
连立精馏段与提馏段操作线得到交点坐标为(0.5345,0.6490)
∴xF=0.649
9.在常压连续精馏塔中,分离苯和甲苯的混合溶液。
若原料为饱和液体,其中含苯0.5(摩尔分率,下同)。
塔顶馏出液组成为0.9,塔底釜残液组成为0.1,回流比为2.0,试求理论板层数和加料板位置。
苯-甲苯平衡数据见例1-1。
解:
常压下苯-甲苯相对挥发度α=2.46
精馏段操作线方程y=Rx/(R+1)=2x/3+0.9/3
=2x/3+0.3
精馏段y1=xD=0.9由平衡关系式y=αx/[1+(α-1)x]得
x1=0.7853再由精馏段操作线方程y=2x/3+0.3得
y2=0.8236依次得到x2=0.6549y3=0.7366
x3=0.5320y4=0.6547
x4=0.4353∵x4﹤xF=0.5精馏段需要板层数为3块
提馏段x1'=x4=0.4353
提馏段操作线方程y=L'x/(L'-W)-WxW/(L'-W)
饱和液体进料q=1
L'/(L'-W)=(L+F)/V=1+W/(3D)
由物料平衡FxF=WxW+DxD
D+W=F代入数据可得D=W
L'/(L'-W)=4/3W/(L'-W)=W/(L+D)=W/3D=1/3
即提馏段操作线方程y'=4x'/3–0.1/3
∴y'2=0.5471
由平衡关系式y=αx/[1+(α-1)x]得x'2=0.3293
依次可以得到y'3=0.4058x'3=0.2173
y'4=0.2564x'4=0.1229
y'5=0.1306x'5=0.0576
∵x'5∴提馏段段需要板层数为4块
∴理论板层数为n=3+4+1=8块(包括再沸器)
加料板应位于第三层板和第四层板之间
10.若原料液组成和热状况,分离要求,回流比及气液平衡关系都与习题9相同,但回流温度为20℃,试求所需理论板层数。
已知回流液的泡殿温度为83℃,平均汽化热为3.2×104kJ/kmol,平均比热为140kJ/(kmol·℃)
解:
回流温度改为20℃,低于泡点温度,为冷液体进料。
即改变了q的值
精馏段不受q影响,板层数依然是3块
提馏段由于q的影响,使得L'/(L'-W)和W/(L'-W)发生了变化
q=(Q1+Q2)/Q2=1+(Q1/Q2)
Q1=CpΔT=140×(83-20)=8820kJ/kmol
Q2=3.2×104kJ/kmol
∴q=1+8820/(3.2×104)=1.2756
L'/(L'-W)=[V+W-F(1-q)]/[V-F(1-q)]
=[3D+W-F(1-q)]/[3D-F(1-q)]∵D=W,F=2D得
L'/(L'-W)=(1+q)/(0.5+q)=1.2815
W/(L'-W)=D/[3D-F(1-q)]=1/(1+2q)=0.2815
∴提馏段操作线方程为y=1.2815x-0.02815
x1'=x4=0.4353代入操作线方程得y2'=0.5297再由平衡关系式得到
x2'=0.3141依次计算y3'=0.3743
x3'=0.1956y4'=0.2225
x4'=0.1042y5'=0.1054
x5'=0.0457
∵x5'∴提馏段板层数为4
理论板层数为3+4+1=8块(包括再沸器)
11.在常压连续精馏塔内分离乙醇-水混合液,原料液为饱和液体,其中含乙醇0.15(摩尔分率,下同),馏出液组成不低于0.8,釜液组成为0.02;操作回流比为2。
若于精馏段侧线取料,其摩尔流量为馏出液摩尔流量的1/2,侧线产品为饱和液体,组成为0.6。
试求所需的理论板层数,加料板及侧线取料口的位置。
物系平衡数据见例1-7。
解:
如图所示,有两股出料,故全塔可以分为三段,由例1-7附表,在x-y直角坐标图上绘出平衡线,从xD=0.8开始,在精馏段操作线与平衡线之间绘出水平线和铅直线构成梯级,当梯级跨过两操作线交点d时,则改在提馏段与平衡线之间绘梯级,直至梯级的铅直线达到或越过点C(xW,xW)。
如图,理论板层数为10块(不包括再沸器)
出料口为第9层;侧线取料为第5层
12.用一连续精馏塔分离由组分A¸B组成的理想混合液。
原料液中含A0.44,馏出液中含A0.957(以上均为摩尔分率)。
已知溶液的平均相对挥发度为2.5,最回流比为1.63,试说明原料液的热状况,并求出q值。
解:
在最回流比下,操作线与q线交点坐标(xq,yq)位于平衡线上;且q线过(xF,xF)可以计算出q线斜率即q/(1-q),这样就可以得到q的值
由式1-47Rmin=[(xD/xq)-α(1-xD)/(1-xq)]/(α-1)代入数据得
0.63=[(0.957/xq)-2.5×(1-0.957)/(1-xq)]/(2.5-1)
∴xq=0.366或xq=1.07(舍去)
即xq=0.366根据平衡关系式y=2.5x/(1+1.5x)
得到yq=0.591
q线y=qx/(q-1)-xF/(q-1)过(0.44,0.44),(0.366,0.591)
q/(q-1)=(0.591-0.44)/(0.366-0.44)得q=0.67
∵013.在连续精馏塔中分离某种组成为0.5(易挥发组分的摩尔分率,下同)的两组分理想溶液。
原料液于泡点下进入塔内。
塔顶采用分凝器和全凝器,分凝器向塔内提供回流液,其组成为0.88,全凝器提供组成为0.95的合格产品。
塔顶馏出液中易挥发组分的回收率96%。
若测得塔顶第一层板的液相组成为0.79,试求:
(1)操作回流比和最小回流比;
(2)若馏出液量为100kmol/h,则原料液流量为多少?
解:
(1)在塔顶满足气液平衡关系式y=αx/[1+(α-1)x]代入已知数据
0.95=0.88α/[1+0.88(α-1)]∴α=2.591
第一块板的气相组成y1=2.591x1/(1+1.591x1)
=2.591×0.79/(1+1.591×0.79)=0.907
在塔顶做物料衡算V=L+D
Vy1=LxL+DxD
0.907(L+D)=0.88L+0.95D∴L/D=1.593
即回流比为R=1.593
由式1-47Rmin=[(xD/xq)-α(1-xD)/(1-xq)]/(α-1)泡点进料xq=xF
∴Rmin=1.031
(2)回收率DxD/FxF=96%得到
F=100×0.95/(0.5×0.96)=197.92kmol/h
15.在连续操作的板式精馏塔中分离苯-甲苯的混合液。
在全回流条件下测得相邻板上的液相组成分别为0.28,0.41和0.57,试计算三层中较低的两层的单板效率EMV。
操作条件下苯-甲苯混合液的平衡数据如下:
x0.260.380.51
y0.450.600.72
解:
假设测得相邻三层板分别为第n-1层,第n层,第n+1层
即xn-1=0.28xn=0.41xn+1=0.57根据回流条件yn+1=xn
∴yn=0.28yn+1=0.41yn+2=0.57
由表中所给数据α=2.4
与第n层板液相平衡的气相组成yn*=2.4×0.41/(1+0.41×1.4)=0.625
与第n+1层板液相平衡的气相组成yn+1*=2.4×0.57/(1+0.57×1.4)=0.483
由式1-51EMV=(yn-yn+1)/(yn*-yn+1)
可得第n层板气相单板效率EMVn=(xn-1-xn)/(yn*-xn)
=(0.57-0.41)/(0.625-0.41)
=74.4%
第n层板气相单板效率EMVn+1=(xn-xn+1)/(yn+1*-xn+1)
=(0.41-0.28)/(0.483-0.28)
=64%
第2章吸收
1.从手册中查得101.33kPa,25℃时,若100g水中含氨1g,则此溶液上方的氨气平衡分压为0.987kPa。
已知在此浓度范围内溶液服从亨利定律,试求溶解度系数Hkmol/(m3·kPa)及相平衡常数m
解:
液相摩尔分数x=(1/17)/[(1/17)+(100/18)=0.0105
气相摩尔分数y=0.987/101.33=0.00974
由亨利定律y=mx得m=y/x=0.00974/0.0105=0.928
液相体积摩尔分数C=(1/17)/(101×10-3/103)=0.5824×103mol/m3
由亨利定律P=C/H得H=C/P=0.5824/0.987=0.590kmol/(m3·kPa)
2.101.33kPa,10℃时,氧气在水中的溶解度可用P=3.31×106x表示。
式中:
P为氧在气相中的分压kPa;x为氧在液相中的摩尔分率。
试求在此温度及压强下与空气充分接触的水中每立方米溶有多少克氧。
解:
氧在气相中的分压P=101.33×21%=21.28kPa
氧在水中摩尔分率x=21.28/(3.31×106)=0.00643×103
每立方米溶有氧0.0064×103×32/(18×10-6)=11.43g
3.某混合气体中含有2%(体积)CO2,其余为空气。
混合气体的温度为30℃,总压强为506.6kPa。
从手册中查得30℃时CO2在水中的亨利系数E=1.88×105kPa,试求溶解度系数Hkmol/(m3·kPa)及相平衡常数m,并计算每100g与该气体相平衡的水中溶有多少gCO2。
解:
由题意y=0.02,m=E/P总=1.88×105/506.6=0.37×103
根据亨利定律y=mx得x=y/m=0.02/0.37×103=0.000054即
每100g与该气体相平衡的水中溶有CO20.000054×44×100/18=0.0132g
H=ρ/18E=103/(10×1.88×105)=2.955×10-4kmol/(m3·kPa)
7.在101.33kPa,27℃下用水吸收混于空气中的甲醇蒸汽。
甲醇在气,液两相中的浓度都很低,平衡关系服从亨利定律。
已知溶解度系数H=1.995kmol/(m3·kPa),气膜吸收系数kG=1.55×10-5kmol/(m2·s·kPa),液膜吸收系数kL=2.08×10-5kmol/(m2·s·kmol/m3)。
试求总吸收系数KG,并计算出气膜阻力在总阻力中所的百分数。
解:
由1/KG=1/kG+1/HkL可得总吸收系数
1/KG=1/1.55×10-5+1/(1.995×2.08×10-5)
KG=1.128×10-5kmol/(m2·s·kPa)
气膜阻力所占百分数为:
(1/kG)/(1/kG+1/HkL)=HkL/(HkL+kG)
=(1.995×2.08)/(1.995×2.08+1.55)
=0.928=92.8%
8.在吸收塔内用水吸收混于空气中的甲醇,操作温度为27℃,压强101.33kPa。
稳定操作状况下塔内某截面上的气相甲醇分压为5kPa,液相中甲醇浓度位2.11kmol/m3。
试根据上题有关的数据算出该截面上的吸收速率。
解:
由已知可得kG=1.128×10-5kmol/(m2·s·kPa)
根据亨利定律P=C/H得液相平衡分压
P*=C/H=2.11/1.995=1.058kPa
∴NA=KG(P-P*)=1.128×10-5(5-1.058)=4.447×10-5kmol/(m2·s)
=0.16kmol/(m2·h)
9.在逆流操作的吸收塔中,于101.33kPa,25℃下用清水吸收混合气中的CO2,将其浓度从2%降至0.1%(体积)。
该系统符合亨利定律。
亨利系数E=5.52×104kPa。
若吸收剂为最小理论用量的1.2倍,试计算操作液气比L/V及出口组成X。
解:
⑴Y1=2/98=0.0204,Y2=0.1/99.9=0.001
m=E/P总=5.52×104/101.33=0.0545×104
由(L/V)min=(Y1-Y2)/X1*=(Y1-Y2)/(Y1/m)
=(0.0204-0.001)/(0.0204/545)
=518.28
L/V=1.2(L/V)min=622
由操作线方程Y=(L/V)X+Y2-(L/V)X2得出口液相组成
X1=(Y1-Y2)/(L/V)=(0.0204-0.001)/622=3.12×10-5
⑵改变压强后,亨利