三一试题.docx

上传人:b****5 文档编号:7474821 上传时间:2023-01-24 格式:DOCX 页数:36 大小:434.18KB
下载 相关 举报
三一试题.docx_第1页
第1页 / 共36页
三一试题.docx_第2页
第2页 / 共36页
三一试题.docx_第3页
第3页 / 共36页
三一试题.docx_第4页
第4页 / 共36页
三一试题.docx_第5页
第5页 / 共36页
点击查看更多>>
下载资源
资源描述

三一试题.docx

《三一试题.docx》由会员分享,可在线阅读,更多相关《三一试题.docx(36页珍藏版)》请在冰豆网上搜索。

三一试题.docx

三一试题

三一重工笔试题目

1牌号T9的碳素工具钢,数值9的含义是:

A,0.09%B0.9%C9%D90%

是碳素工具钢的一种

T表示碳素工具钢

数字表示碳含量,以平均碳含量的千分之几表示。

例如“T8”表示平均碳含量为0.8%。

同类的还有T7、T8、T9、T10、T11、T12、T13、T8Mn等

下列选项中属于获得形状误差的是

A试切法B调整法C刀尖轨迹法D找正装佳

2.工艺基准是在工艺过程中所采取的基准,它不包括

A.工序基准B定位基准C.测量基准D.平面基准

3.一对齿轮的材料加工都相同,则接触疲劳破坏先发生在

A大轮B小轮C同时D不一定

4..45号钢齿轮经过调治处理,起硬度为

ABCDB、HBS=220~270

5..圆齿轮强地计算中,以()齿轮为计算依据

A大断当量圆柱齿轮

B平均分度当量圆柱齿轮

C大端分度圆住齿轮

D平均分度当量圆柱的当量直齿齿轮

下面哪个属于间隙配合

AH7/f6BH8/k7CK6/h5DH9/h9

液压系统的工作压力取决于

A泵的工作压力B溢流阀的调定压力C负载

减小或消除应力的办法是什么?

退火处理,

钢丸冲击金属表面:

第一使零件表面生成0.1-0.4mm深的硬化层,增加零件表面对塑性变形和断裂的抵抗能力,并使表层产生压应力,提高其疲劳强度;第二使零件表面上的缺陷和由于机械加工所带来的损伤减少,从而降低应力集中.

提高表面质量消除应力的方法就是1、长时间的放置,让其内应力自然消除。

2、经过高温退火,消除应力。

3、矫枉过正,把物体经过反复的施加大于本身的反作用力,使其消除应力。

 

液压系统的大多数故障是_压油的污染物__引起的?

按照一般情况下的使用,基本上有:

液压泵故障(油压小,油量不足)、过滤器堵塞或差压大、控制阀损坏或密闭/开启不到位(这个基本上也是因为油内污物引起)、油温过高(冷却效率不足)、油位低报警。

如果是有速度控制的,还包括先导阀损坏、流量失控(导致速度失控)。

液压系统发生故障,主要是构成回路的元件本身产生的动作不良和系统回路的相互干涉,以及某元件单体异常动作而产生的。

在液压元件故障中,液压泵的故障率最高,约占液压元件故障率的30%左右,所以要引起足够的重视。

另外,由于工作介质选用不当和管理不善而造成的液压系统故障也非常多。

在液压系统的全部故障中约有70%~80%是由液压油的污染物引起的,而在液压油引起的故障中约有90%是杂质造成的。

杂质对液压系统十分有害,它能加剧元件磨损、泄漏增加、性能下降、寿命缩短,甚至导致元件损坏和系统失灵。

十六进制FFH的转化为十进制是多少?

15x16+15x1=255

 1:

工艺基准是在工艺过程中所采取的基准,它不包括

  a.工序基准⑴工序基准、⑵定位基准、⑶测量基准、⑷装配基准

  b.定位基准

  c.测量基准

  d.平面基准

 6:

旋压模材料的选用取决于哪些因素?

答:

取决于工件的产量;尺寸;形状。

6:

拉变形程度包括哪些内容?

 答:

贴模程度;允许变形程度。

7:

金属结构的连接方法有哪几种?

有焊接,铆接,螺栓连接,铆焊混合连接

8:

求曲线实长的方法有哪些?

答:

换面法和展开法。

9:

常用的矫正设备有哪几种?

答:

钢板矫直机;卷板机;压力机。

10:

铆钉孔径在冷铆时如何确定?

答:

冷铆时,钉杆不易墩粗,为保证连接强度,钉孔直径应与钉杆直径接近。

11:

什么叫压延?

加热过的混炼胶,通过相对旋转、水平设置的两辊筒之间的辊隙,制成胶片等半成品的工艺谓之压延

12:

一般制作什么工件需要放边?

在成型过程中使变形部位的边缘材料伸展变薄的操作叫放边。

13:

什么叫夹紧?

工件在定位的基础上由于加工时工件受外力较大(主要是切削力)定位一般会被破坏,这时就需要对工件施加夹紧力,以防止工件移动,这个就叫夹紧。

 10:

常用的低压电器有哪些?

隔离开关QS起隔离作用

断路器QF接通、分断、保护线路

接触器KM接通线路

热继电器KH设备过热时保护

时间继电器KT按要求时间对回路进行接通分断

中间继电器KA放大回路

变压器T改变电压

转换开关HK按旋转的位置接通不同的几组点

旋钮SA同上

按钮SB按下后接通或分断回路

指示灯HW(Y,G,R,B等)通电后按不同颜色指示设备或回路不同状态

软启RQ启动电机类设备

双电源互投ATS两路电源进线供电

浪涌保护器SPD受雷击时保护回路和设备

应急电源UPSEPS断电时提供电源

13:

通常电气控制线路由哪几部分组成?

动力电路;控制电路;信号电路;照明电路。

11:

什么叫合金钢?

在普通碳素钢基础上添加适量的一种或多种合金元素而构成的铁碳合金

14:

电焊机主要有哪几种?

有直流焊机和交流焊机

(一)加工原理误差:

定义:

由于采用近似的加工运动或近似的刀具轮廓所产生的加工误差,为加工原理误差。

  

(1)采用近似的刀具轮廓形状:

例如:

模数铣刀铣齿轮。

  

(2)采用近似的加工运动:

例如:

车削蜗杆时,由于蜗杆螺距Pg=πm,而π=3.1415926…,是无理数,所以螺距值只能用近似值代替。

因而,刀具与工件之间的螺旋轨迹是近似的加工运动。

(二)机床调整误差:

机床调整:

是指使刀具的切削刃与定位基准保持正确位置的过程。

(1)进给机构的调整误差:

主要指进刀位置误差;

(2)定位元件的位置误差:

使工件与机床之间的位置不正确,而产生误差;

(3)模板(或样板)的制造误差:

使对刀不准确。

(三)装夹误差:

定义:

工件在装夹过程中产生的误差,为装夹误差。

装夹误差包括定位误差和夹紧误差。

定位误差是指一批工件采用调整法加工时因定位不正确而引起的尺寸或位置的最大变动量。

定位误差由基准不重合误差和定位副制造不准确误差造成。

夹紧误差:

如夹紧力忽大忽小引起的误差。

(四)工艺系统几何误差

1、机床的几何误差

   加工中刀具相对于工件的成形运动一般都是通过机床完成的,因此,工件的加工精度在很大程度上取决于机床的精度。

机床制造误差对工件加工精度影响较大的有:

主轴回转误差、导轨误差和传动链误差。

机床的磨损将使机床工作精度下降。

1)主轴回转误差

   机床主轴是装夹工件或刀具的基准,并将运动和动力传给工件或刀具,主轴回转误差将直接影响被加工工件的精度。

   主轴回转误差是指主轴各瞬间的实际回转轴线相对其平均回转轴线的变动量。

它可分解为径向圆跳动、轴向窜动和角度摆动三种基本形式。

   产生主轴径向回转误差的主要原因有:

主轴几段轴颈的同轴度误差、轴承本身的各种误差、轴承之间的同轴度误差、主轴绕度等。

但它们对主轴径向回转精度的影响大小随加工方式的不同而不同。

 

   譬如,在采用滑动轴承结构为主轴的车床上车削外圆时,切削力F的作用方向可认为大体上时不变的,见上图,在切削力F的作用下,主轴颈以不同的部位和轴承内径的某一固定部位相接触,此时主轴颈的圆度误差对主轴径向回转精度影响较大,而轴承内径的圆度误差对主轴径向回转精度的影响则不大;在镗床上镗孔时,由于切削力F的作用方向随着主轴的回转而回转,在切削力F的作用下,主轴总是以其轴颈某一固定部位与轴承内表面的不同部位接触,因此,轴承内表面的圆度误差对主轴径向回转精度影响较大,而主轴颈圆度误差的影响则不大。

图中的δd表示径向跳动量。

  

  

   产生轴向窜动的主要原因是:

主轴轴肩端面和轴承承载端面对主轴回转轴线有垂直度误差。

   不同的加工方法,主轴回转误差所引起的的加工误差也不同。

主轴回转误差产生的加工误差。

1)径向跳动:

影响工件圆度;

2)轴向窜动:

影响轴向尺寸,加工螺纹时影响螺距值;

3)角度摆动:

影响圆柱度;

   提高主轴回转精度的措施:

主要是要消除轴承的间隙。

   适当提高主轴及箱体的制造精度,选用高精度的轴承,提高主轴部件的装配精度,对高速主轴部件进行平衡,对滚动轴承进行预紧等,均可提高机床主轴的回转精度。

nextpage

2)导轨误差

    导轨是机床上确定各机床部件相对位置关系的基准,也是机床运动的基准。

车床导轨的精度要求主要有以下三个方面:

在水平面内的直线度;在垂直面内的直线度;前后导轨的平行度(扭曲)。

  

 a)导轨在水平面内的直线度误差:

卧式车床导轨在水平面内的直线度误差△1将直接反映在被加工工件表面的法线方向(加工误差的敏感方向)上,对加工精度的影响最大。

 b)导轨在垂直平面内的直线度误差:

卧式车床导轨在垂直面内的直线度误差△2可引起被加工工件的形状误差和尺寸误差。

但△2对加工精度的影响要比△1小得多。

由下图可知,若因△2而使刀尖由a下降至b,不难推得工件半径R的变化量。

 

 c)前后导轨存在平行度误差(扭曲)时,刀架运动时会产生摆动,刀尖的运动轨迹是一条空间曲线,使工件产生形状误差。

由下图可见,当前后导轨有了扭曲误差△3之后,由几何关系可求得△y≈(H/B)△3。

一般车床的H/B≈2/3,外圆磨床的H/B≈1,车床和外圆磨床前后导轨的平行度误差对加工精度的影响很大。

 d)导轨与主轴回转轴线的平行度误差:

若车床与主轴回转轴线在水平面内有平行度误差,车出的内外圆柱面就产生锥度;若车床与主轴回转轴线在垂直面内有平行度误差,则圆柱面成双曲回转体。

因是非误差敏感方向,故可略。

   除了导轨本身的制造误差外,导轨的不均匀磨损和安装质量,也使造成导轨误差的重要因素。

导轨磨损是机床精度下降的主要原因之一。

nextpage

3)传动链误差

   传动链误差是指机床内联系传动链始末两端传动元件间相对运动的误差。

一般用传动链末端元件的转角误差来衡量。

   内联系传动链:

两端件之间的相对运动量有严格要求的传动链,为内联系传动链。

例如:

车削螺纹的加工,主轴与刀架的相对运动关系不能严格保证时,将直接影响螺距的精度。

   减少传动链传动误差的措施:

1)减少传动件的数目,缩短传动链:

传动元件越少,传动累积误差就越小,传动精度就越高。

2)传动比越小,传动元件的误差对传动精度的影响就越小:

特别是传动链尾端的传动元件的传动比越小,传动链的传动精度就越高。

2、刀具的几何误差

    刀具误差对加工精度的影响随刀具种类的不同而不同。

采用定尺寸刀具、成形刀具、展成刀具加工时,刀具的制造误差会直接影响工件的加工精度;而对一般刀具(如车刀等),其制造误差对工件加工精度无直接影响。

    任何刀具在切削过程中,都不可避免地要产生磨损,并由此引起工件尺寸和形状地改变。

正确地选用刀具材料和选用新型耐磨地刀具材料,合理地选用刀具几何参数和切削用量,正确地刃磨刀具,正确地采用冷却液等,均可有效地减少刀具地尺寸磨损。

必要时还可采用补偿装置对刀具尺寸磨损进行自动补偿。

3、夹具的几何误差

 

   夹具的作用时使工件相当于刀具和机床具有正确的位置,因此夹具的制造误差对工件的加工精度(特别使位置精度)有很大影响。

   夹具误差包括:

(1)夹具各元件之间的位置误差;

(2)夹具中各定位元件的磨损。

    如上图钻床夹具中,钻套轴心线f至夹具定位平面c间的距离误差,影响工件孔a至底面B尺寸L的精度;钻套轴心线f至夹具定位平面c间的平行度误差,影响工件孔轴心线a至底面B的平行度;夹具定位平面c与夹具体底面d底的垂直度误差,影响工件孔轴心线a与底面B间的尺寸精度和平行度;钻套孔的直径误差亦将影响工件孔a至底面B的尺寸精度和平行度。

二、加工过程中存在的误差

 

(一)工艺系统受力变形引起的误差

1、基本概念

    机械加工工艺系统在切削力、夹紧力、惯性力、重力、传动力等的作用下,会产生相应的变形,从而破坏了刀具和工件之间的正确的相对位置,使工件的加工精度下降。

   如下图a示,车细长轴时,工件在切削力的作用下会发生变形,使加工出的轴出现中间粗两头细的情况;又如在内圆磨床上进行切入式磨孔时,下图b,由于内圆磨头轴比较细,磨削时因磨头轴受力变形,而使工件孔呈锥形。

 

   垂直作用于工件加工表面(加工误差敏感方向)的径向切削分力Fy与工艺系统在该方向上的变形y之间的比值,称为工艺系统刚度k系,即

   k系=Fy/y    

式中的变形y不只是由径向切削分力Fy所引起,垂直切削分力Fz与走刀方向切削分力Fx也会使工艺系统在y方向产生变形,故

  y=yFx+yFy+yFznextpage

2、工件刚度

   工艺系统中如果工件刚度相对于机床、刀具、夹具来说比较低,在切削力的作用下,工件由于刚度不足而引起的变形对加工精度的影响就比较大,其最大变形量可按材料力学有关公式估算。

3、刀具刚度

    外圆车刀在加工表面法线(y)方向上的刚度很大,其变形可以忽略不计。

镗直径较小的内孔,刀杆刚度很差,刀杆受力变形对孔加工精度就有很大影响。

刀杆变形也可以按材料力学有关公式估算。

4、机床部件刚度

1)机床部件刚度

   机床部件由许多零件组成,机床部件刚度迄今尚无合适的简易计算方法,目前主要还是用实验方法来测定机床部件刚度。

分析实验曲线可知,机床部件刚度具有以下特点:

(1)变形与载荷不成线性关系;

(2)加载曲线和卸载曲线不重合,卸载曲线滞后于加载曲线。

两曲线线间所包容的面积就是加载和卸载循环中所损耗的能量,它消耗于摩擦力所作的功和接触变形功;

(3)第一次卸载后,变形恢复不到第一次加载的起点,这说明有残余变形存在,经多次加载卸载后,加载曲线起点才和卸载曲线终点重合,残余变形才逐渐减小到零;

(4)机床部件的实际刚度远比我们按实体估算的要小。

2)影响机床部件刚度的因素

(1)结合面接触变形的影响

(2)摩擦力的影响

(3)低刚度零件的影响

(4)间隙的影响

5、工艺系统刚度及其对加工精度的影响

   在机械加工过程中,机床、夹具、刀具和工件在切削力作用下,都将分别产生变形y机、y夹、y刀、y工,致使刀具和被加工表面的相对位置发生变化,使工件产生加工误差。

工艺系统刚度的倒数等于其各组成部分刚度的倒数和。

 

   工艺系统刚度对加工精度的影响主要有以下几种情况:

1)由于工艺系统刚度变化引起的误差

  工艺系统的刚度随受力点位置的变化而变化。

例如:

用三爪卡盘夹紧工件车削外圆的加工,随悬壁长度的增加,刚度将越来越小。

因而,车出的外圆将呈锥形。

2)由于切削力变化引起的误差

    加工过程中,由于工件的加工余量发生变化、工件材质不均等因素引起的切削力变化,使工艺系统变形发生变化,从而产生加工误差。

 

    若毛坯A有椭圆形状误差(如下图)。

让刀具调整到图上双点划线位置,由图可知,在毛坯椭圆长轴方向上的背吃刀量为ap1,短轴方向上的背吃刀量为ap2。

由于背吃刀量不同,切削力不同,工艺系统产生的让刀变形也不同,对应于ap1产生的让刀为y1,对应于ap2产生的让刀为y2,故加工出来的工件B仍然存在椭圆形状误差。

由于毛坯存在圆度误差△毛=ap1-ap2,因而引起了工件的圆度误差△工=y1-y2,且△毛愈大,△工愈大,这种现象称为加工过程中的毛坯误差复映现象。

△工与△毛之比值ε称为误差复映系数,它是误差复映程度的度量。

   尺寸误差(包括尺寸分散)和形状误差都存在复映现象。

如果我们知道了某加工工序的复映系数,就可以通过测量毛坯的误差值来估算加工后工件的误差值。

 

3)由于夹紧变形引起的误差

   工件在装夹过程中,如果工件刚度较低或夹紧力的方向和施力点选择不当,将引起工件变形,造成相应的加工误差。

4)其它作用力的影响nextpage

6、减小工艺系统受力变形的途径

   由前面对工艺系统刚度的论述可知,若要减少工艺系统变形,就应提高工艺系统刚度,减少切削力并压缩它们的变动幅值。

具体如下:

1)提高工艺系统刚度

(1)提高工件和刀具的刚度减小刀具、工件的悬伸长度:

以提高工艺系统的刚度;

(2)减小机床间隙,提高机床刚度:

采用预加载荷,使有关配合产生预紧力,而消除间隙。

(3)采用合理的装夹方式和加工方式

2)减小切削力及其变化

   合理地选择刀具材料,增大前角和主偏角,对工件材料进行合理的热处理以改善材料地加工性能等,都可使切削力减小。

(二)工艺系统受热变形引起的误差

   工艺系统热变形对加工精度的影响比较大,特别是在精密加工和大件加工中,由热变形所引起的加工误差有时可占工件总误差的40%~70%。

机床、刀具和工件受到各种热源的作用,温度会逐渐升高,同时它们也通过各种传热方式向周围的物质和空间散发热量。

当单位时间传入的热量与其散出的热量相等时,工艺系统就达到了热平衡状态。

1、工艺系统的热源

  内部热源:

如系统内部的摩擦热(由轴承副、齿轮副等产生)、切削热等;

  外部热源:

如外部环境温度、阳光辐射等。

2、工艺系统受热变形引起的误差

1)工件受热变形:

工件受热温度升高后,热伸长量△L为:

△L=αL△t

   式中:

α为工件材料的热膨胀系数;L为工件长度;△t为工件的温升。

例如:

死顶尖装夹工件时,热变形将造成工件弯曲。

在磨床上为消除热变形的影响,而采用弹簧顶尖。

2)机床受热变形:

当机床受热不均时,造成机床部件产生变形。

例如:

机床主轴前、后端受热不均,将造成主轴抬高,并倾斜。

3)刀具受热变形:

刀具受热以后,引起刀具热伸长,刀尖位置发生变化,因而影响加工精度。

3、减小工艺系统热变形的途径

1.减少发热和隔热  2.改善散热条件         3.均衡温度场

4.改进机床结构     5.加快温度场的平衡   6.控制环境温度

(三)刀具的磨损引起的误差:

   刀具在切削过程中,由于摩擦,刀具将产生磨损,使刀具尺寸发生变化,而造成加工误差。

三、加工后存在的误差:

(一)工件残余应力引起的误差

1、基本概念

   没有外力作用而存在于零件内部的应力,称为残余应力(又称内应力)。

   工件上一旦产生内应力之后,就会使工件金属处于一种高能位的不稳定状态,它本能地要向低能位的稳定状态转化,并伴随有变形发生,从而使工件丧失原有的加工精度。

2、内应力的产生

   热加工中内应力的产生    在热处理工序中由于工件壁厚不均匀、冷却不均、金相组织的转变等原因,使工件产生内应力。

 

   上图示一个内外壁厚相差较大的铸件。

浇铸后,铸件将逐渐冷却至室温。

由于壁1和壁2比较薄,散热较易,所以冷却比较快。

壁3比较厚,所以冷却比较慢。

当壁1和壁2从塑性状态冷到弹性状态时,壁3的温度还比较高,尚处于塑性状态。

所以壁1和壁2收缩时壁3不起阻挡变形的作用,铸件内部不产生内应力。

但当壁3也冷却到弹性状态时,壁1和壁2的温度已经降低很多,收缩速度变得很慢。

但这时壁3收缩较快,就受到了壁1和壁2的阻碍。

因此,壁3受拉应力的作用,壁1和2受压应力作用,形成了相互平衡的状态。

如果在这个铸件的壁1上开一个口,则壁1的压应力消失,铸件在壁3和2的内应力作用下,壁3收缩,壁2伸长,铸件就发生弯曲变形,直至内应力重新分布达到新的平衡为止。

推广到一般情况,各种铸件都难免产生冷却不均匀而形成的内应力,铸件的外表面总比中心部分冷却得快。

特别是有些铸件(如机床床身),为了提高导轨面的耐磨性,采用局部激冷的工艺使它冷却更快一些,以获得较高的硬度,这样在铸件内部形成的内应力也就更大些。

若导轨表面经过粗加工剥去一些金属,这就象在图中的铸件壁1上开口一样,必将引起内应力的重新分布并朝着建立新的应力平衡的方向产生弯曲变形。

nextpage

   为了克服这种内应力重新分布而引起的变形,特别是对大型和精度要求高的零件,一般在铸件粗加工后安排进行时效处理,然后再作精加工。

   丝杠一类的细长轴经过车削以后,棒料在轧制中产生的内应力要重新分布,产生弯曲,如下图示。

   冷校直就是在原有变形的相反方向加力F,使工件向反方向弯曲,产生塑性变形,以达到校直的目的。

在F力作用下,工件内部的应力分布如图b所示。

当外力F去除以后,弹性变形部分本来可以完成恢复而消失,但因塑性变形部分恢复不了,内外层金属就起了互相牵制的作用,产生了新的内应力平衡状态,如图c所示,所以说,冷校直后的工件虽然减少了弯曲,但是依然处于不稳定状态,还会产生新的弯曲变形。

 

3、减小内应力变形误差的途径

1.改进零件结构——设计零件时,尽量做到壁厚均匀,结构对称,以减少内应力的产生。

2.增设消除内应力的热处理工序

  1)高温时效:

缓慢均匀的冷却,适用于铸、锻、焊件;

  2)低温时效:

缓慢均匀的冷却,适用于半精加工后的工件,主要是消除工件的表面应力;

  3)自然时效:

自然释放。

3.合理安排工艺过程——粗加工和精加工宜分阶段进行,使工件在粗加工后有一定的时间来松弛内应力。

(二)测量误差:

1、量具本身的制造误差

2、测量条件引起的误差

1)冷却后测量与加工后马上测量尺寸有变化;

2)测量力的变化也引起测量尺寸的变化。

1.问:

常见的齿轮传动失效有哪些形式?

  答:

齿轮的常见失效为:

轮齿折断、齿面磨损、齿面点蚀、齿面胶合、塑性变形等。

 2.问:

在不改变材料和尺寸的情况下,如何提高轮齿的抗折断能力?

  答:

可采取如下措施:

1)减小齿根应力集中;2)增大轴及支承刚度;3)采用适当的热处理方法提高齿芯的韧性;4)对齿根表层进行强化处理。

 3.问:

为什么齿面点蚀一般首先发生在靠近节线的齿根面上?

  答:

当轮齿在靠近节线处啮合时,由于相对滑动速度低形成油膜的条件差,润滑不良,摩擦力较大,特别是直齿轮传动,通常这时只有一对齿啮合,轮齿受力也最大,因此,点蚀也就首先出现在靠近节线的齿根面上。

 4.问:

在开式齿轮传动中,为什么一般不出现点蚀破坏?

  答:

开式齿轮传动,由于齿面磨损较快,很少出现点蚀。

 5.问:

如何提高齿面抗点蚀的能力?

  答:

可采取如下措施:

1)提高齿面硬度和降低表面粗糙度;2)在许用范围内采用大的变位系数和,以增大综合曲率半径;3)采用粘度高的润滑油;4)减小动载荷。

 6.问:

什么情况下工作的齿轮易出现胶合破坏?

如何提高齿面抗胶合能力?

  答:

高速重载或低速重载的齿轮传动易发生胶合失效。

措施为:

1)采用角度变位以降低啮合开始和终了时的滑动系数;2)减小模数和齿高以降低滑动速度;3)采用极压润滑油;4)采用抗校核性能好的齿轮副材料;5)使大小齿轮保持硬度差;6)提高齿面硬度降低表面粗糙度。

 7.问:

闭式齿轮传动与开式齿轮传动的失效形式和设计准则有何不同?

  答:

闭式齿轮传动:

主要失效形式为齿面点蚀、轮齿折断和胶合。

目前一般只进行接触疲劳强度和弯曲疲劳强度计算。

开式齿轮传动:

主要失效形式为轮齿折断和齿面磨损,磨损尚无完善的计算方法,故目前只进行弯曲疲劳强度计算,用适当增大模数的办法考虑磨损的影响。

 8.问:

硬齿面与软齿面如何划分?

其热处理方式有何不同?

  答:

软齿面:

HB≤350,硬齿面:

HB>350。

软齿面热处理一般为调质或正火,而硬齿面则是正火或调质后切齿,再经表面硬化处理。

 9.问:

在进行齿轮强度计算时,为什么要引入载荷系数K?

  答:

在实际传动中,由于原动机及工作机性能的影响,以及齿轮的制造误差,特别是基节误差和齿形误差的影响,会使法向载荷增大。

此外在同时啮合的齿对间,载荷的分配并不是均匀的,即使在一对齿上,载荷也不可能沿接触线均匀分布。

因此实际载荷比名义载荷大,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1