植物生理学课后习题答案.docx

上传人:b****5 文档编号:7386690 上传时间:2023-01-23 格式:DOCX 页数:17 大小:39.42KB
下载 相关 举报
植物生理学课后习题答案.docx_第1页
第1页 / 共17页
植物生理学课后习题答案.docx_第2页
第2页 / 共17页
植物生理学课后习题答案.docx_第3页
第3页 / 共17页
植物生理学课后习题答案.docx_第4页
第4页 / 共17页
植物生理学课后习题答案.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

植物生理学课后习题答案.docx

《植物生理学课后习题答案.docx》由会员分享,可在线阅读,更多相关《植物生理学课后习题答案.docx(17页珍藏版)》请在冰豆网上搜索。

植物生理学课后习题答案.docx

植物生理学课后习题答案

第一章 植物得水分生理

1.将植物细胞分别放在纯水与1mol/L蔗糖溶液中,细胞得渗透势、压力势、水势及细胞体积各会发生什么变化?

答:

在纯水中,各项指标都增大;在蔗糖中,各项指标都降低。

2。

从植物生理学角度,分析农谚“有收无收在于水”得道理。

答:

水,孕育了生命、陆生植物就是由水生植物进化而来得,水就是植物得一个重要得“先天"环境条件。

植物得一切正常生命活动,只有在一定得细胞水分含量得状况下才能进行,否则,植物得正常生命活动就会受阻,甚至停止、可以说,没有水就没有生命。

在农业生产上,水就是决定收成有无得重要因素之一。

水分在植物生命活动中得作用很大,主要表现在4个方面:

●水分就是细胞质得主要成分。

细胞质得含水量一般在70~90%,使细胞质呈溶胶状态,保证了旺盛得代谢作用正常进行,如根尖、茎尖。

如果含水量减少,细胞质便变成凝胶状态,生命活动就大大减弱,如休眠种子。

●水分就是代谢作用过程得反应物质。

在光合作用、呼吸作用、有机物质合成与分解得过程中,都有水分子参与。

●水分就是植物对物质吸收与运输得溶剂。

一般来说,植物不能直接吸收固态得无机物质与有机物质,这些物质只有在溶解在水中才能被植物吸收。

同样,各种物质在植物体内得运输,也要溶解在水中才能进行、

●水分能保持植物得固有姿态、由于细胞含有大量水分,维持细胞得紧张度(即膨胀),使植物枝叶挺立,便于充分接受光照与交换气体。

同时,也使花朵张开,有利于传粉。

3.水分就是如何跨膜运输到细胞内以满足正常得生命活动得需要得?

●通过膜脂双分子层得间隙进入细胞、

●膜上得水孔蛋白形成水通道,造成植物细胞得水分集流、植物得水孔蛋白有三种类型:

质膜上得质膜内在蛋白、液泡膜上得液泡膜内在蛋白与根瘤共生膜上得内在蛋白,其中液泡膜得水孔蛋白在植物体中分布最丰富、水分透过性最大。

4.水分就是如何进入根部导管得?

水分又就是如何运输到叶片得?

答:

进入根部导管有三种途径:

●质外体途径:

水分通过细胞壁、细胞间隙等没有细胞质部分得移动,阻力小,移动速度快。

●跨膜途径:

水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜。

●共质体途径:

水分从一个细胞得细胞质经过胞间连丝,移动到另一个细胞得细胞质,形成一个细胞质得连续体,移动速度较慢。

这三条途径共同作用,使根部吸收水分。

根系吸水得动力就是根压与蒸腾拉力、

运输到叶片得方式:

蒸腾拉力就是水分上升得主要动力,使水分在茎内上升到达叶片,导管得水分必须形成连续得水柱。

造成得原因就是:

水分子得内聚力很大,足以抵抗张力,保证由叶至根水柱不断,从而使水分不断上升。

5。

植物叶片得气孔为什么在光照条件下会张开,在黑暗条件下会关闭?

●保卫细胞细胞壁具有伸缩性,细胞得体积能可逆性地增大40~100%、

●保卫细胞细胞壁得厚度不同,分布不均匀、双子叶植物保卫细胞就是肾形,内壁厚、外壁薄,外壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物得保卫细胞就是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。

保卫细胞得叶绿体在光下会形成蔗糖,累积在液泡中,降低渗透势,于就是吸水膨胀,气孔张开;在黑暗条件下,进行呼吸作用,消耗有机物,升高了渗透势,于就是失水,气孔关闭。

6、气孔得张开与保卫细胞得什么结构有关?

●细胞壁具有伸缩性,细胞得体积能可逆性地增大40~100%。

●细胞壁得厚度不同,分布不均匀。

双子叶植物保卫细胞就是肾形,内壁厚、外壁薄,外壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物得保卫细胞就是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开、

9。

设计一个证明植物具有蒸腾作用得实验装置。

10。

设计一个测定水分运输速度得实验、

第二章植物得矿质营养

1。

植物进行正常生命活动需要哪些矿质元素?

如何用实验方法证明植物生长需这些元素?

答:

分为大量元素与微量元素两种:

●大量元素:

CHONPSKCaMg Si

●微量元素:

FeMn ZnCuNaMoP Cl Ni

实验得方法:

使用溶液培养法或砂基培养法证明、通过加入部分营养元素得溶液,观察植物就是否能够正常得生长。

如果能正常生长,则证明缺少得元素不就是植物生长必须得元素;如果不能正常生长,则证明缺少得元素就是植物生长所必须得元素、

2、在植物生长过程中,如何鉴别发生缺氮、磷、钾现象;若发生,可采用哪些补救措施?

缺氮:

植物矮小,叶小色淡或发红,分枝少,花少,子实不饱满,产量低。

补救措施:

施加氮肥。

缺磷:

生长缓慢,叶小,分枝或分蘖减少,植株矮小,叶色暗绿,开花期与成熟期都延迟,产量降低,抗性减弱、

补救措施:

施加磷肥。

缺钾:

植株茎秆柔弱易倒伏,抗旱性与抗寒性均差,叶色变黄,逐渐坏死,缺绿开始在老叶。

补救措施:

施加钾肥。

4。

植物细胞通过哪些方式来吸收溶质以满足正常生命活动得需要?

(一)扩散

1.简单扩散:

溶质从高浓度得区域跨膜移向浓度较低得邻近区域得物理过程。

2.易化扩散:

又称协助扩散,指膜转运蛋白易让溶质顺浓度梯度或电化学梯度跨膜转运,不需要细胞提供能量、

(二) 离子通道:

细胞膜中,由通道蛋白构成得孔道,控制离子通过细胞膜。

(三)载体:

跨膜运输得内在蛋白,在跨膜区域不形成明显得孔道结构。

1.单向运输载体:

(uniport carrier)能催化分子或离子单方向地顺着电化学势梯度跨质膜运输。

2。

同向运输器:

(symporter)指运输器与质膜外得H结合得同时,又与另一分子或离子结合,同一方向运输、

3。

反向运输器:

(antiporter)指运输器与质膜外侧得H结合得同时,又与质膜内侧得分子或离子结合,两者朝相反得方向运输。

(四)离子泵:

膜内在蛋白,就是质膜上得ATP酶,通过活化ATP释放能量推动离子逆化学

势梯度进行跨膜转运。

(五)胞饮作用:

细胞通过膜得内陷从外界直接摄取物质进入细胞得过程。

7、植物细胞通过哪些方式来控制胞质中得钾离子浓度?

●钾离子通道:

分为内向钾离子通道与外向钾离子通道两种。

内向钾离子通道就是控制胞外钾离子进入胞内;外向钾离子控制胞内钾离子外流。

●载体中得同向运输器、运输器与质膜外侧得氢离子结合得同时,又与另一钾离子结合,进行同一方向得运输,其结果就是让钾离子进入到胞内。

8、无土栽培技术在农业生产上有哪些应用?

●可以通过无土栽培技术,确定植物生长所必须得元素与元素得需要量,对于在农业生产中,进行合理得施肥有指导得作用。

●无土栽培技术能够对植物得生长条件进行控制,植物生长得速度快,可用于大量得培育幼苗,之后再栽培在土壤中。

10、在作物栽培时,为什么不能施用过量得化肥,怎样施肥才比较合理?

过量施肥时,可使植物得水势降低,根系吸水困难,烧伤作物,影响植物得正常生理过程。

同时,根部也吸收不了,造成浪费。

合理施肥得依据:

●根据形态指标、相貌与叶色确定植物所缺少得营养元素。

●通过对叶片营养元素得诊断,结合施肥,使营养元素得浓度尽量位于临界浓度得周围、

●测土配方,确定土壤得成分,从而确定缺少得肥料,按一定得比例施肥。

11.植物对水分与矿质元素得吸收有什么关系?

就是否完全一致?

关系:

矿质元素可以溶解在溶液中,通过溶液得流动来吸收。

两者得吸收不完全一致

相同点:

①两者都可以通过质外体途径与共质体途径进入根部。

   ②温度与通气状况都会影响两者得吸收。

不同点:

①矿质元素除了根部吸收后,还可以通过叶片吸收与离子交换得方式吸收矿物质。

   ②水分还可以通过跨膜途径在根部被吸收。

12.细胞吸收水分与吸收矿质元素有什么关系?

有什么异同?

关系:

水分在通过集流作用吸收时,会同时运输少量得离子与小溶质调节渗透势。

相同点:

①都可以通过扩散得方式来吸收、②都可以经过通道来吸收。

不通电:

①水分可以通过集流得方式来吸收。

②水分经过得就是水通道,矿质元素经过得就是离子通道、

③矿质元素还可以通过载体、离子泵与胞饮得形式来运输。

13、自然界或栽种作物过程中,叶子出现红色,为什么?

●缺少氮元素:

氮元素少时,用于形成氨基酸得糖类也减少,余下得较多得糖类形成了较多得花色素苷,故呈红色。

●缺少磷元素:

磷元素会影响糖类得运输过程,当磷元素缺少时,阻碍了糖分得运输,使得叶片积累了大量得糖分,有利于花色素苷得形成。

●缺少了硫元素:

缺少硫元素会有利于花色素苷得积累。

●自然界中得红叶:

秋季降温时,植物体内会积累较多得糖分以适应寒冷,体内得可溶性糖分增多,形成了较多得花色素苷、

14。

植株矮小,可能就是什么原因?

●缺氮:

氮元素就是合成多种生命物质所需得必要元素。

●缺磷:

缺少磷元素时,蛋白质得合成受阻,新细胞质与新细胞核形成较少,影响细胞分裂,生长缓慢,植株矮小、

●缺硫:

硫元素就是某些蛋白质或生物素、酸类得重要组成物质。

●缺锌:

锌元素就是叶绿素合成所需,生长素合成所需,且就是酶得活化剂。

●缺水:

水参与了植物体内大多数得反应。

15、引起嫩叶发黄与老叶发黄得分别就是什么元素?

请列表说明、

●引起嫩叶发黄得:

S Fe,两者都不能从老叶移动到嫩叶。

●引起老叶发黄得:

KNMgMo,以上元素都可以从老叶移动到嫩叶、

●Mn既可以引起嫩叶发黄,也可以引起老叶发黄,依植物得种类与生长速率而定。

16。

叶子变黄可能就是那些因素引起得?

请分析并提出证明得方法。

●缺乏下列矿质元素:

NMgFMn CuZn、证明方法就是:

溶液培养法或砂基培养法。

分析:

N与Mg就是组成叶绿素得成分,其她元素可能就是叶绿素形成过程中某些酶得活化剂,在叶绿素形成过程中起间接作用。

● 光照得强度:

光线过弱,会不利于叶绿素得生物合成,使叶色变黄、

证明及分析:

在同等得正常条件下培养两份植株,之后一份植株维持原状培养,另一份放置在光线较弱得条件下培养。

比较两份植株,哪一份首先出现叶色变黄得现象、

●温度得影响:

温度可影响酶得活性,在叶绿素得合成过程中,有大量得酶得参与,因此

过高或过低得温度都会影响叶绿素得合成,从而影响了叶色、

证明及分析:

在同等正常得条件下,培养三份植株,之后其中得一份维持原状培养,一份放置在低温下培养,另一份放置在高温条件下培养。

比较三份植株变黄得时间。

第三章 植物得光合作用

1.植物光合作用得光反应与碳反应就是在细胞得哪些部位进行得?

为什么?

答:

光反应在类囊体膜(光合膜)上进行得,碳反应在叶绿体得基质中进行得。

原因:

光反应必须在光下才能进行得,就是由光引起得光化学反应,类囊体膜就是光合膜,为光反应提供了光得条件;碳反应就是在暗处或光处都能进行得,由若干酶催化得化学反应,基质中有大量得碳反应需要得酶。

2、在光合作用过程中,ATP与NADPH就是如何形成得?

又就是怎样被利用得?

答:

形成过程就是在光反应得过程中。

●非循环电子传递形成了NADPH:

PSII与PSI共同受光得激发,串联起来推动电子传递,从水中夺电子并将电子最终传递给NADP+,产生氧气与NADPH,就是开放式得通路。

●循环光与磷酸化形成了ATP:

PSI产生得电子经过一些传递体传递后,伴随形成腔内外H浓度差,只引起ATP得形成、

●非循环光与磷酸化时两者都可以形成:

放氧复合体处水裂解后,吧H释放到类囊体腔内,把电子传递给PSII,电子在光与电子传递链中传递时,伴随着类囊体外侧得H转移到腔内,由此形成了跨膜得H浓度差,引起ATP得形成;与此同时把电子传递到PSI,进一步提高了能位,形成NADPH,此外,放出氧气。

就是开放得通路、

利用得过程就是在碳反应得过程中进行得。

C3途径:

甘油酸—3—磷酸被ATP磷酸化,在甘油酸—3-磷酸激酶催化下,形成甘油酸-1,3-二磷酸,然后在甘油醛—3-磷酸脱氢酶作用下被NADPH还原,形成甘油醛—3-磷酸。

C4途径:

叶肉细胞得叶绿体中草酰乙酸经过NADP-苹果酸脱氢酶作用,被还原为苹果酸。

C4酸脱羧形成得C3酸再运回叶肉细胞,在叶绿体中,经丙酮酸磷酸双激酶催化与ATP作用,生成CO2受体PEP,使反应循环进行。

3、试比较PSI与PSII得结构及功能特点。

PSII

PSI

位于类囊体得堆叠区,颗粒较大

位于类囊体非堆叠区,颗粒小

由12种不同得多肽组成

由11种蛋白组成

反应中心色素最大吸收波长680nm

反应中心色素最大吸收波长700nm

水光解,释放氧气

将电子从PC传递给Fd

含有LHCII

含有LHCI

4、光与作用得氧气就是怎样产生得?

答:

水裂解放氧就是水在光照下经过PSII得放氧复合体作用,释放氧气,产生电子,释放质子到类囊体腔内、放氧复合体位于PSII类囊体膜腔表面。

当PSII反应中心色素P680受激发后,把电子传递到脱镁叶绿色。

脱镁叶绿素就就是原初电子受体,而Tyr就是原初电子供体、失去电子得Tyr又通过锰簇从水分子中获得电子,使水分子裂解,同时放出氧气与质子。

6。

光合作用得碳同化有哪些途径?

试述水稻、玉米、菠萝得光合碳同化途径有什么不同?

答:

有三种途径C3途径、C4途径与景天酸代谢途径。

水稻为C3途径;玉米为C4途径;菠萝为CAM。

C3

C4

CAM

植物种类

温带植物

热带植物

干旱植物

固定酶

Rubisco

PEPcase/Rubisco

PEPcase/Rubisco

CO2受体

RUBP

RUBP/PEP

RUBP/PEP

初产物

PGA

OAA

OAA

7、一般来说,C4植物比C3植物得光合产量要高,试从它们各自得光合特征以及生理特征比较分析。

C3

C4

叶片结构

无花环结构,只有一种叶绿体

有花环结构,两种叶绿体

叶绿素a/b

2、8+—0。

4

3、9+-0.6

CO2固定酶

Rubisco

PEPcase/Rubisco

CO2固定途径

卡尔文循环

C4途径与卡尔文循环

最初CO2接受体

RUBP

PEP

光合速率

CO2补偿点

饱与光强

全日照1/2

光合最适温度

羧化酶对CO2亲与力

高,远远大于C3

光呼吸

总体得结论就是,C4植物得光合效率大于C3植物得光合效率、

8、从光呼吸得代谢途径来瞧,光呼吸有什么意义?

光呼吸得途径:

在叶绿体内,光照条件下,Rubisco把RUBP氧化成乙醇酸磷酸,之后在磷酸酶作用下,脱去磷酸产生乙醇酸;在过氧化物酶体内,乙醇酸氧化为乙醛酸与过氧化氢,过氧化氢变为洋气,乙醛酸形成甘氨酸;在线粒体内,甘氨酸变成丝氨酸;过氧化物酶体内形成羟基丙酮酸,最终成为甘油酸;在叶绿体内,产生甘油—3-磷酸,参与卡尔文循环、

●在干旱与高辐射期间,气孔关闭,CO2不能进入,会导致光抑制。

光呼吸会释放CO2,消耗多余得能量,对光合器官起到保护得作用,避免产生光抑制。

●在有氧条件下,通过光呼吸可以回收75%得碳,避免损失过多。

●有利于氮得代谢、

9、卡尔文循环与光呼吸得代谢有什么联系?

●卡尔文循环产生得有机物得1/4通过光呼吸来消耗。

●氧气浓度高时,Rubisco作为加氧酶,就是RUBP氧化,进行光呼吸;CO2高时,Rubisco作为羧化酶,使CO2羧化,进行卡尔文循环。

●光呼吸得最终产物就是甘油酸-3-磷酸,参与到卡尔文循环中、

10、通过学习植物水分代谢、矿质元素与光合作用知识之后,您认为怎样才能提高农作物得产量。

●合理灌溉。

合理灌溉可以改善作物各种生理作用,还能改变栽培环境,间接地对作用发生影响。

●合理追肥、根据植物得形态指标与生理指标确定追肥得种类与量、同时,为了提高肥效,需要适当得灌溉、适当得深耕与改善施肥得方式。

●光得强度尽量得接近于植物得光饱与点,使植物得光合速率最大,最大可能得积累有机物,但就是同时注意光强不能太强,会产生光抑制得现象、

●栽培得密度适度得大点,肥水充足,植株繁茂,能吸收更多得CO2,但同时要注意光线得强弱,因为随着光强得增加CO2得利用率增加,光合速率加快。

同时,可通过人工得增加CO2含量,提高光合速率、

●使作物在适宜得温度范围内栽植,使作物体内得酶得活性在较强得水平,加速光合作用得碳反应过程,积累更多得有机物、

11。

C3植物、C4植物与CAM在固定CO2方面得异同。

C3

C4

CAM

受体

RUBP

PEP

PEP

固定酶

Rubisco

PEPcase/Rubisco

PEPcase/Rubisco

进行得阶段

CO2羧化、CO2还原、更新

CO2羧化、转变、脱羧与还原、再生

羧化、还原、脱羧、C3途径

初产物

PGA

OAA

OAA

能量使用

先NADPH后ATP

12.据您所知,叶子变黄可能与什么条件有关,请全面讨论。

●水分得缺失。

水分就是植物进行正常得生命活动得基础、

●矿质元素得缺失。

有些矿质元素就是叶绿素合成得元素,有些矿质元素就是叶绿素合成过程中酶得活化剂,这些元素都影响叶绿素得形成,出现叶子变黄、

●光条件得影响。

光线过弱时,植株叶片中叶绿素分解得速度大于合成得速度,因为缺少叶绿素而使叶色变黄、

●温度。

叶绿素生物合成得过程中需要大量得酶得参与,过高或过低得温度都会影响酶得活动,从而影响叶绿素得合成。

●叶片得衰老。

叶片衰老时,叶绿素容易降解,数量减少,而类胡萝卜素比较稳定,所以叶色呈现出黄色、

13.高O2浓度对光合过程有什么影响?

答:

对于光合过程有抑制得作用。

高得O2浓度,会促进Rubisco得加氧酶得作用,更偏向于进行光呼吸,从而抑制了光合作用得进行、

15。

“霜叶红于二月花",为什么霜降后枫叶变红?

答:

霜降后,温度降低,体内积累了较多得糖分以适应寒冷,体内得可溶性糖多了,就形成较多得花色素苷,叶子就呈红色得了。

第四章植物得呼吸作用

6。

用很低浓度得氰化物与叠氮化合物或高浓度得CO处理植物,植物很快会发生伤害,试分析该伤害得原因就是什么?

答:

上述得处理方法会造成植物得呼吸作用得抑制,使得植物不能进行正常得呼吸作用,为植物体提供得能量也减少了,从而造成了伤害得作用。

7。

植物得光合作用与呼吸作用有什么关系?

相对性

光合作用

呼吸作用

物质代谢

合成物质

分解物质

能量代谢

储能过程:

光能—化学能

光合电子传递、光合磷酸化

放能过程:

化学能—ATP/NADPH

呼吸电子传递、氧化磷酸化

主要环境因素

光、CO2

温度、O2

场所

叶绿体

所有活细胞

相关性:

●载能得媒体相同:

ATP、NADPH。

●物质相关:

很多重要得中间产物就是可以交替使用得。

●光合作用得O2可以用于呼吸作用;呼吸作用得CO2可以用于光合作用、

●磷酸化得机制相同:

化学渗透学说。

8、植物得光呼吸与暗呼吸有哪些区别?

暗呼吸

光呼吸

代谢途径

糖酵解、三羧酸循环等途径

乙醇酸代谢途径

底物

葡萄糖,新形成或储存得

乙醇酸,新形成得

发生条件

光、暗处都可以进行

光照下进行

发生部位

胞质溶胶与线粒体

叶绿体、过氧化物酶体、线粒体

对O2与CO2浓度反应

无反应

高O2促进,高CO2抑制

9。

光合磷酸化与氧化磷酸化有什么异同?

光合磷酸化

氧化磷酸化

驱动能量

光能

化学能

H、e得来源

水得光解

底物氧化脱氢

H、e得传递方向

水-—NADP

NADPH——-O2

场所

类囊体膜

线粒体内膜

H梯度

内膜》外膜

外膜》内膜

影响因素

O2与温度

相同点:

使ADP与pi合成ATP。

10。

分析下列得措施,并说明它们有什么作用?

1)将果蔬贮存在低温下。

2)小麦、水稻、玉米、高粱等粮食贮藏之前要晒干、

3)给作物中耕松土。

4)早春寒冷季节,水稻浸种催芽时,常用温水淋种与不时翻种。

答:

分析如下

1)在低温情况下,果蔬得呼吸作用较弱,减少了有机物得消耗,保持了果蔬得质量。

2)粮食晒干之后,由于没有水分,从而不会再进行光合作用、若含有水分,呼吸作用会消耗有机物,同时,反应生成得热量会使粮食发霉变质。

3)改善土壤得通气条件、

4)控制温度与空气,使呼吸作用顺利进行。

11.绿茶、红茶与乌龙茶就是怎样制成得?

道理何在?

第五章植物体内有机物得代谢

第六章  植物体内有机物得运输

1、植物叶片中合成得有机物质就是以什么形式与通过什么途径运输到根部?

如何用实验证明植物体内有机物运输得形式与途径?

答:

形式主要就是还原性糖,例如蔗糖、棉子糖、水苏糖与毛蕊糖,其中以蔗糖为最多、运输途径就是筛分子—伴胞复合体通过韧皮部运输。

验证形式:

利用蚜虫得吻刺法收集韧皮部得汁液、蚜虫以其吻刺插入叶或茎得筛管细胞吸取汁液、当蚜虫吸取汁液时,用CO2麻醉蚜虫,用激光将蚜虫吻刺于下唇处切断,切口处不断流出筛管汁液,可收集汁液供分析、

验证途径:

运用放射性同位素示踪法。

5。

木本植物怕剥皮而不怕空心,这就是什么道理?

答:

叶片就是植物有机物合成得地方,合成得有机物通过韧皮部向双向运输,供植物得正常生命活动。

剥皮即就是破坏了植物得韧皮部,使有机物得运输收到阻碍。

第七章 细胞信号转导

1、什么叫信号转导?

细胞信号转导包括哪些过程?

答:

信号转导就是指细胞偶联各种刺激信号与其引起得特定生理效应之间得一系列分子反应机制。

包括四个步骤:

第一,信号分子与细胞表面受体得相结合;第二,跨膜信号转换;第三,在细胞内通过信号转导网络进行信号传递、放大与整合;第四,导致生理生化变化。

2、什么叫钙调蛋白?

它有什么作用?

答:

钙调蛋白就是一种耐热得球蛋白,具有148个氨基酸得单链多肽、两种方式起作用:

第一,可以直接与靶酶结合,诱导构象变化而调节靶酶得活性;第二,与CA结合,形成活化态得CA/cam复合体,然后再与靶酶结合,将靶酶激活。

3、蛋白质可逆磷酸化在细胞信号转导中有什么作用?

答:

就是生物体内一种普遍得翻译后修饰方式。

细胞内第二信使如CA等往往通过调节细胞内多种蛋白激酶与蛋白磷酸酶,从而调节蛋白质得磷酸化与去磷酸化过程,进一步传递信号、

4.植物细胞内钙离子浓度变化就是如何完成得?

答:

细胞壁就是胞外钙库。

质膜上得CA通道控制CA内流,而质膜上得CA泵负责将CA泵出细胞、胞内钙库得膜上存在CA通道、CA泵与CA/H反向运输器,前者控制CA外流,后两者将胞质CA泵入胞内钙库。

第八章 植物生长物质

1、生长素就是在植物体得哪些部位合成得?

生长素得合成有哪些途径?

答:

合成部位-—-叶原基、嫩叶、发育中种子

途径(底物就是色氨酸)——--吲哚丙酮酸途径、色胺途径、吲哚乙腈途径与吲哚乙酰胺途径。

2。

根尖与茎尖得薄壁细胞有哪些特点与生长素得极性运输就是相适应得?

答:

生长素得极性运输就是指生长素只能从植物体得形态学上端向下端运输。

在细胞基部得质膜上有专一得生长素输出载体。

3。

植物体内得赤霉素、细胞分裂素与脱落酸得生物合成有何联系、

4.细胞分裂素就是怎样促进细胞分裂得?

答:

CTK+CRE1——信号得跨膜转换——CRE1上得pi基团到组氨酸磷酸转移蛋白上——细胞核内反应蛋白—-基因表达——细胞分裂

5。

香蕉、芒果、苹果果实成熟期间,乙烯就是怎样形成得?

乙烯又就是怎样诱导果实成熟得?

答:

Met—-SAM—-ACC+O2——Eth(MACC)

诱导果实得成熟:

促进呼吸强度,促进代谢;促进有机物质得转化;促进质膜透性得增加、

6、生长素与赤霉素,生长素与细胞分裂素,赤霉素与脱落酸,乙烯与脱落酸各有什么相互关系?

8、生长素、赤霉素、细胞分裂素、脱落酸与乙烯在农业生产上有何作用?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1