高清版届青浦区中考数学二模.docx

上传人:b****5 文档编号:7176074 上传时间:2023-01-21 格式:DOCX 页数:15 大小:62.02KB
下载 相关 举报
高清版届青浦区中考数学二模.docx_第1页
第1页 / 共15页
高清版届青浦区中考数学二模.docx_第2页
第2页 / 共15页
高清版届青浦区中考数学二模.docx_第3页
第3页 / 共15页
高清版届青浦区中考数学二模.docx_第4页
第4页 / 共15页
高清版届青浦区中考数学二模.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

高清版届青浦区中考数学二模.docx

《高清版届青浦区中考数学二模.docx》由会员分享,可在线阅读,更多相关《高清版届青浦区中考数学二模.docx(15页珍藏版)》请在冰豆网上搜索。

高清版届青浦区中考数学二模.docx

高清版届青浦区中考数学二模

青浦区2019学年九年级第二次学业质量调研测试数学试卷

(时间100分钟,满分150分)Q2020.05

一、选择题:

(本大题共6题,每题4分,满分24分)

[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]

1.a(a≠0)的倒数是(▲)

(A)a;(B)-a;(C)1;(D)-1.

aa

2.计算(-2x)2的结果,正确的是(▲)

(A)2x2;(B)-2x2;(C)4x2;(D)-4x2.

3.如果反比例函数y=k的图像分布在第二、四象限,那么k的取值范围是(▲)

x

(A)k>0;(B)k<0;(C)k≥0;(D)k≤0.

4.下列方程中,没有实数根的是(▲)

(A)x2-2x=0;(B)x2-2x-1=0;(C)x2-2x+1=0;(D)x2-2x+2=0.

5.为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查中,下列说法正确的是(▲)

(A)400名学生中每位学生是个体;(B)400名学生是总体;

(C)被抽取的50名学生是总体的一个样本;(D)样本的容量是50.

6.如图1,点G是∆ABC的重心,联结AG并延长交BC边于点D.A

设AB=a,GD=b,那么向量BC用向量a、b表示为(▲)

G

(A)BC=3b-2a;(B)BC=3b+2a;

BDC

(C)BC=6b-2a;(D)BC=6b+2a.

二、填空题:

(本大题共12题,每题4分,满分48分)

[在答题纸相应题号后的空格内直接填写答案]

7.计算:

a3÷a=▲.

8.在实数范围内因式分解:

m2-2=▲.

9.函数y=

x+3的定义域是▲.

⎧x+1≥0,

10.不等式组⎨2-x>0.的解集是▲.

 

11.如果将直线y=3x平移,使其经过点(0,-1),那么平移后的直线表达式是▲.

12.从2,3,4,5,6这五个数中任选一个数,选出的这个数是素数的概率是▲.

13.如果点D、E分别是∆ABC的AB、AC边的中点,那么∆ADE与∆ABC的周长之比是▲.

14.已知点C在线段AB上,且0

2

天数

1

2

3

发芽

15

30

5

▲.

15.随机选取50粒种子在适宜的温度下做发芽天数的试验,试验的结果如右表所示.估计该作物种子发芽的天数的平均数约为▲天.

16.在∆ABC中,AB=AC=3,BC=2,将∆ABC绕着点B顺时针旋转,如果点A落在射线BC上的

点A'处.那么AA'=

▲.

17.在Rt∆ABC中,∠ACB=90o,AC=3,BC=4.分别以A、B为圆心画圆,如果⊙A经过点C,

⊙B与⊙A相交,那么⊙B的半径r的取值范围是▲.

18.

小明学习完《相似三角形》一章后,发现了一个有趣的结论:

在C

两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角

形相似,那么分割出来的另外两个小三角形也相似.他把这样的

AGB

图2

D

EHF

图3

两条直线称为这两个直角三角形的相.似.分.割.线..如图2、图3,直线CG、DH分别是两个不相似的Rt∆ABC和Rt∆DEF的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果∆BCG与∆DFH相似,AC=3,AB=5,DE=4,DF=8,那么AG=▲.

三、解答题:

(本大题共7题,满分78分)

[将下列各题的解答过程,做在答题纸的相应位置上]

19.(本题满分10分)

11⎛1⎫-2

计算:

-1-82-+ç⎪.

⎝2⎭

20.(本题满分10分)

解方程:

4x-

x2-4

2

x-2

=1-

1

.

x+2

21.(本题满分10分,第

(1)小题5分,第

(2)小题5分)C

如图4,在Rt∆ABC中,∠ACB=90

,AC=BC=4,点D在边BC上,且BD=3CD,DE⊥AB,垂足为点E,联结CE.

(1)求线段AE的长;

(2)求∠ACE的余切值.

22.(本题满分10分,第

(1)小题3分,第

(2)小题7分)

某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过

 

A

 

500

 

EB

 

图4

 

y(米)

A

程中,甲、乙两人间的距离y(米)与出发的时间x(分)之间的关系如图5中OA—AB折线所示.

(1)用文字语言描述点A的实际意义;

(2)求甲、乙两人的速度及两人相遇时x的值.

O20B

图5

x(分)

23.(本题满分12分,第

(1)小题7分,第

(2)小题5分)

如图6,在平行四边形ABCD中,BE、DF分别是平行四边形的

两个外角的平分线,∠EAF=1∠BAD,边AE、AF分别交两条角平

2

ABG

分线于点E、F.

(1)求证:

∆ABE∽∆FDA;

DCE

H

 

F

图6

(2)联结BD、EF,如果DF2=AD⋅AB,求证:

BD=EF.

 

24.(本题满分12分,第

(1)小题4分,第

(2)小题4分,第(3)小题4分)

如图7,在平面直角坐标系xOy中,二次函数y=ax2-4ax+3的图像与x轴正半轴交于点A、B,与y轴相交于点C,顶点为D,且tan∠CAO=3.

(1)求这个二次函数的解析式;

(2)点P是对称轴右侧抛物线上的点,联结CP,交对称轴于点F,当SCDF:

SFDP=2:

3时,求点

P的坐标;

(3)在

(2)的条件下,将△PCD沿直线MN翻折,当点P恰好与点O重合时,折痕MN交x轴于

OM

点M,交y轴于点N,求

ON

的值.

图7备用图

25.(本题满分14分,第

(1)小题4分,第

(2)小题6分,第(3)小题4分)

如图8,已知AB是半圆O的直径,AB=6,点C在半圆O上.过点A作AD⊥OC,垂足为点D,AD

的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).

(1)当点F为BC的中点时,求弦BC的长;

(2)设OD=x,DE=y,求y与x的函数关系式;

AE

(3)当△AOD与△CDE相似时,求线段OD的长.

 

AOBAOB

 

图8

备用图

青浦区2019学年九年级第二次学业质量调研测试评分参考202005

 

一、选择题:

1.C;2.C;3.B;4.D;5.D;6.C.

二、填空题:

7.a2;8.(m+2)(m-;9.x≥-3;

 

10.-1≤x<2;11.y=3x-1;12.3;

5

13.1:

2;14.点B在⊙C外;15.1.8;

16.23;17.2<r<8;18.3.

三、解答题:

19.解:

原式=3-1-2

-(-

2)+4.·····················································(8分)

 

=-+3.·············································································(2分)

20.解:

两边同乘以(x+2)(x-2),得

 

4x-2(x+2)=x2-4-(x-2)································

································

(4分)

x2-3x+2=0.································

解得x1=1,x2=2.································

································

 

································

·················

 

··············

(2分)

 

(2分)

经检验,x1=1是原方程的根,x2=2是原方程的增根,舍去.·······················(1分)

所以,原方程的根是x=1.(1分)

21.证明:

(1)∵BC=4,BD=3CD,∴BD=3.(1分)

∵AB=BC,∠ACB=90°∴∠A=∠B=45°.································(1分)

∵DE⊥AB,∴在Rt△DEB中,cosB=BE=2.∴BE=32···(2分)

BD22

在Rt△ACB中,AB=

=4∴AE=52

2

···············(1分)

(2)∵过点E作EH⊥AC于点H.

AH25

∴在Rt△AHE中,cosA,AH=AE⋅cos45︒=

·············(1分)

AE22

∴CH=AC-AH=4-5=3,∴EH=AH=5

····································(2分)

222

CH33

∴在Rt△CHE中,cot∠ECB==,即∠ECB的余切值是·············(2分)

EH55

22.解:

(1)20分钟时,甲乙两人相距500米.···············································(3分)

(2)V甲

=1500=75米

20分

,V乙

=1000=50米

20分

···································(4分)

依题意,可列方程:

75(x-20)+50(x-20)=500(1分)

解这个方程,得x=24(1分)

答:

甲的速度是每分钟75米,乙的速度是每分钟50米,两人相遇时x的值为24.··(1分)

1

23.证明:

(1)∵∠EAF=

2

1

∠BAD.∴∠DAF+∠BAE=

2

∠BAD·························(1分)

1

∵DF平分∠HDC,∴∠HDF=

2

∠HDC.(1分)

又∵ABCD是平行四边形,∴AB∥CD.

∴∠BAD=∠CDH.

∴∠HDF=∠DAF+∠BAE.································

·······················

(1分)

又∵∠HDF=∠DAF+∠F,································

∴∠BAE=∠F.································

 

································

·······················

 

······

(1分)

(1分)

同理:

∠DAF=∠E································

································

···

(1分)

∴△ABE∽△FDA································

································

····

(1分)

(2)作AP平分∠DAB交CD

1

∴∠DAP=

2

∠BAD,

1

∵∠HDF=

2

∠CDH,且∠BAD=∠CDH

 

∴DF∥AP·······················································································(1分)同理:

BE∥AP,∴DF∥BE

∵△ABE∽△FDA∴AD=DF,即BE⋅DF=AD⋅AB···························(1分)

BEAB

又∵DF2=AD⋅AB

 

∴BE=DF························································································(1分)

∴四边形DFEB是平行四边形·····························································(1分)

∴BD=EF························································································(1分)

 

24.解:

(1)∵二次函数y=ax2-4ax+3的图像与y轴交于点C,

∴点C的坐标为(0,3)∴OC=3··························································(1分)

联结AC,在Rt△AOC中,tan∠CAO=OC=3∴OA=1··························(1分)

OA

 

将点A(1,0)代入y=ax2-4ax+3,得a-4a+3=0,·······················(1分)

解得:

a=1.

所以,这个二次函数的解析式为

y=x2-4x+3.(1分)

(2)过点C作CG⊥DF,过点P作PQ⊥DF,垂足分别为点G、Q.

∵抛物线y=x2-4x+3的对称轴为直线x=2,∴CG=2.····················(1分)

∵S∆CDF

=CG=2,∴PQ=3.·························································(1分)

S∆FDP

PQ3

∴点P的横坐标为5.(1分)

∴把x=5代入

y=x2-4x+3,得

y=8∴点P的坐标为(5,8)·········(1分)

(3)过点P作PH⊥OM,垂足分别为点H

∵点P的坐标为(5,8)∴OH=5,PH=8.···············································(1分)

∵将△PCD沿直线MN翻折,点P恰好与点O重合,

∴MN⊥OP,∴∠ONM+∠NOP=90°.····················································(1分)又∵∠POH+∠NOP=90°,

∴∠ONM=∠POH.········································································(1分)

∴tan∠ONM=OM=tan∠POM=PH=8.············································(1分)

ONOH5

25.解:

(1)联结OF,交BC于点H.

∵F是BC中点,∴OF⊥BC,BC=2BH.·····················································(1分)

∴∠BOF=∠COF.

∵OA=OF且OC⊥AF,∴∠AOC=∠COF

∴∠AOC=∠COF=∠BOF=60°(1分)

在Rt∆BOH中,Sin∠BOH=BH=3

························································(1分)

OB2

 

∴BH=33,BC=3

2

···········································································(1分)

(2)联结BF.

∵AF⊥OC,垂足为点=D,∴AD=DF.································

又∵OA=OB,

·······················

(1分)

∴OD∥BF,BF=2OD=2x.································

································

·(1分)

∴DE=CD=3-x,·············································································(1分)

EFBF2x

 

∴DE=3-x

即DE=3-x(1分)

DF3+xAD3+x

 

∴DE=3-x,·····················································································(1分)

AE6

∴y=3-x.·······················································································(1分)

6

(3)∆AOD∽∆CDE,分两种情况:

①当∠DCE=∠DOA时,AB//CB,不符合题意,舍去.(1分)

②当∠DCE=∠DAO时,联结OF.

∵OA=OF,OB=OC,∴∠OAF=∠OFA,∠OCB=∠OBC.

∠DCE=∠DAO∴∠OAF=∠OFA=∠OCB=∠OBC.(1分)

∵∠AOD=∠OCB+∠OBC=2∠OAF,(1分)

∴∠OAF=30︒,∴OD=1OA=3.(1分)

22

即,线段OD的长为3

2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 互联网

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1