循环冷却水加药及水质处理.docx

上传人:b****6 文档编号:6526570 上传时间:2023-01-07 格式:DOCX 页数:19 大小:211.10KB
下载 相关 举报
循环冷却水加药及水质处理.docx_第1页
第1页 / 共19页
循环冷却水加药及水质处理.docx_第2页
第2页 / 共19页
循环冷却水加药及水质处理.docx_第3页
第3页 / 共19页
循环冷却水加药及水质处理.docx_第4页
第4页 / 共19页
循环冷却水加药及水质处理.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

循环冷却水加药及水质处理.docx

《循环冷却水加药及水质处理.docx》由会员分享,可在线阅读,更多相关《循环冷却水加药及水质处理.docx(19页珍藏版)》请在冰豆网上搜索。

循环冷却水加药及水质处理.docx

循环冷却水加药及水质处理

循环冷却水加药及水质处理

一.总述

冷却水在循环系统中不断循环使用,由于水温升高,水流速度的变化,水的蒸发,各种有机物质及无机离子的浓缩,冷却塔及水池在室外受阳光的照射,风吹雨淋,灰尘杂物的进入,以及设备结构和材料的多种因素的综合作用,会产生比直流系统更为严重的沉积物的附着,设备腐蚀和微生物的大量滋生,以及由此带来的黏泥污垢堵塞管道等问题.这样的结果会危和破坏工厂的长周期的安全生产,甚至造成损失,所以必须多循环冷却水系统水质进行日常的有效的监控,使上述问题得到解决和改善.

冷却水控制指标:

Parameter

Unit

Value(Mini)

Value(Max)

Conductivity

电导率(s/cm)

μS/cm

2000

5000

pH

7.5-8.8

7.5-8.8

SuspendedSolids

悬浮物(ppm)

ppm(w/w)

--

10

Turbidity浊度

NTU

--

20

TotalHardness

(asCaCO3)

ppm(w/w)

500

1800

TotalAlkalinity

总碱度(asCaCO3)

ppm(w/w)

80

400

Calcium钙离子

(asCaCO3)

ppm(w/w)

300

1200

Chloride

氯离子(ppm)

ppm(w/w)

200

600

TotalZinc

总锌(ppm)

ppm(w/w)

0.5

2

SO42-

硫酸根(ppm)

ppm(w/w)

--

1000

Otho-phosphate

正磷(ppm)

ppm(w/w)

3.5

6.0

TotalIron

总铁(ppm)

ppm(w/w)

--

3

SiO2二氧化硅(ppm)

ppm(w/w)

--

150

Freehalogen

余卤(ppm)

ppm

0.2

0.5

Corrosiverate

腐蚀速率(mm/a)

mm/a

--

0.075

Slurry

粘泥量(ml/m3)

ml/M3

--

10

Microbiology

细菌总数

CFU/ml

--

105

药剂投加和控制方式

药剂

产品名称

无泄漏

加药点

备注

用量(ppm)

分散剂

N73202

25-30

回水集水槽

由Trasar自控仪控制投加

缓蚀剂

N7359

20-25

回水集水槽

由Trasar自控仪控制投加

氧化型杀菌剂

强氯精

0.1-0.5(回水余氯)

循环水塔池

间隙投加,连续控制

非氧化型杀菌剂

N7330

10

回水集水槽

连续投加

PH调节剂

H2SO4

控制pH

靠近补水管线

根据补水连续投加

基本概念及计算公式:

1.浓缩倍数:

补给水与排污水的浓度比

CR=(排污水电导/补给水电导+排污水钙硬/补给水钙硬)/2

CR=(2400/750+520/150)/2=(3.2+3.5)/2=3.3

CR=(2400/350+520/90)/2=(6.8+5.7)/2=6.28

原水电导分析结果:

冷却水电导分析结果:

2.循环水量:

系统内单位时间内参与循环的水量的总和。

RR=6800NM3/H

3.蒸发量:

冷却水经换热气返回到冷却塔中,通过蒸发进行换热冷却,在这个工程中损失的水量.

E=R*(T2-T1)/6.45*100(T/H)

E=6800(33.5-29)/6.45*100=47.5T/H

4.排污水量:

B=E/(CR-1)

B=47.5/(6-1)=9.5T/H

5.补给水量:

MU=E+B+DD:

风吹损失(此可不计)

或MU=E*(CR/CR-1)

a)MU=E+B+D

=47.5+9.5=57T/H

b)MU=E*(CR/CR-1)

=47.5*(6./6.-1)

=57T/H

(说明:

现在动力的补给水量稳定在55-58T/H之间,排污水量考虑到钙硬和浊度,及没有旁滤的原因,现在排污量以15T/H进行控制的)

腐蚀速率:

控制标准要求:

〈0.075mm/a

注:

NalcoTestCorrosionRateData:

碳钢挂片腐蚀速率(≤0.075mm/a)

Oct-06

0.025

Nov-06

0.029

Dec-06

0.032

Jan-07

0.021

Feb-07

0.024

Mar-07

0.018

Apr-07

0.016

May-07

0.021

开放式循环冷却水系统通常要关注的三个主要问题是:

结垢;腐蚀;和微生物及黏泥.

6.沉积物的析出和附着

一般天然水中都溶解有重碳酸盐,这种盐是冷却水系统发生水垢的主要成分.在直流冷却水系统中,重碳酸盐的浓度较低.但在循环冷却水系统中,重碳酸盐浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态的时候.或者在经过换热器传热表面使水温升高时,就会发生如下的反映:

Ca(HCO3)2=CaCO3↓+CO2↑+H2O

冷却水经过冷却塔向下喷淋时,溶解在水中的CO2就会逸出,这就促使上述反映向右进行.CaCO3沉积在换热器的表面上,形成致密的碳酸钙水垢,它的导热性很差.水垢附着的危害,轻者是换热器的传热效率降低,影响产品质量和产量,严重的则堵塞管道.

7设备腐蚀

循环冷却水系统中,大量的设备是金属制造的换热器.对于碳钢制成的换热器,长期使用冷却水,会发生腐蚀穿孔,其就是腐蚀造成的.

a)冷却水溶解氧的电化学腐蚀.

结果就是微电池的阳极区的金属不断的溶解而被腐蚀.

B)有害离子引起的腐蚀.

金属的腐蚀速率与水中阴离子的种类有密切关系,水中的阴离子在增加水中金属的腐蚀速度方面有如下的顺序:

NO3-

C)微生物引起的腐蚀

循环冷却水的微生物的滋生,也会引起金属发生腐蚀.这是由于微生物排除的黏泥与无机垢和泥砂杂物等形成的沉积物附着在金属表面,促使金属腐蚀.此外,在金属表面和沉积物之间缺乏氧,因此一些厌氧菌得以繁殖,当温度在25-30℃时,其繁殖更快.对金属的腐蚀创造了有利的条件。

附:

水温和PH值对细菌繁殖的影响:

上述因素对碳钢的腐蚀通常使换热器管壁穿孔,形成渗漏,损失物料,污染水体,影响产品质量.

微生物的滋生和黏泥

冷却水中的微生物一般是指细菌和藻类.在新鲜水中,一般细菌和藻类都比较少,但在循环冷却水中,由于养分的浓缩,水温的升高和日光照射,给细菌和藻类繁殖创造了迅速繁殖的条件.大量的细菌分泌出的黏泥象黏合剂一样,能使水中漂浮的灰尘杂质和化学沉淀物等黏附在一起,形成沉积物黏附在换热器的传热表面上的,即是生物黏泥.

黏泥积附在换热器壁上,除会引起腐蚀外,还会使冷却水的流量减少,从而降低换热器的冷却效率;严重的,这些捻泥会将管子堵死,迫使停车清洗.

(我们的控制标准:

异氧菌总数<1*105个,现在我们的系统稳定在300-1000个之间,主要依靠投加N2819SE(氧化性杀生剂强氯精)结合N7330(非氧化性杀生剂)来实现的。

AnaerobicBacteriaSum:

二.循环冷却水系统中的沉积物

沉积物包括:

水垢(SCALE),淤泥(SLUDGE),腐蚀产物(CORROSIONPRODUCTS)和生物沉积物(BIOLOGICALDEPOSITS)构成.通常,我们把淤泥,腐蚀产物和生物沉积物三者统称为污垢(FOULING).

天然水中溶解的各种盐类,如重碳酸盐,硫酸盐,氯化物,硅酸盐等.其中以溶解度重碳酸盐Ca(HCO3)2,Mg(HCO3)2为最多,也最不稳定,容易分解生成碳酸盐.(说明:

冷却水经过冷却塔相当于一个暴气过程,溶解的CO2逸出,因此水的PH值会升高.

Ca(HCO3)2=CaCO3↓+CO2↑+H2O

此时,重碳酸盐在碱性条件下也会发生如下的反映

Ca(HCO3)2+2OH-=CaCO3↓+CO32-↑+2H2O

在水中有CaCL2时,还会产生下列反映:

CaCL2+CO32-=CaCO3↓+2CL-

在大多数情况下,换热器表面上形成的水垢是以碳酸钙为主的.这是因为硫酸钙的溶解度远远大于碳酸钙.而磷酸盐相对较少,(我们控制的正磷是3-4PPM).因此,形成磷酸钙水垢的机会也很少.

污垢是由颗粒细小的泥砂,尘土,不溶性盐类的泥状物,胶状氢氧化物,杂物碎屑,腐蚀产物,油污,特别是菌藻的尸体及其黏性分泌物等组成。

水处理不当,细菌控制杀灭不及时,或腐蚀严重,水质浊度过高等,都会加剧污垢形成,当这些杂质经过换热面时,特别是水走壳程,流速缓慢的部位污垢沉积更多。

三,水垢析出的判断

(1)碳酸钙垢析出的判断

碳酸钙在水中达到饱和状态的时候,存在如下动平衡关系。

Ca(HCO3)2=Ca2+↓+2HCO32-①

HCO32-=H++CO32-②

CaCO3=Ca2++CO32-③

根据上述平衡关系,朗格利尔提出了饱和PH和饱和指数的概念,以判断碳酸钙在水中是否析出水垢,并提出了用加酸或用加碱预处理的方法来控制水垢的析出。

如果冷却水系统中碳酸钙呈饱和状态,则反应式1,2和3处于平衡状态,重碳酸钙既不分解为碳酸钙,碳酸钙也不会继续溶解。

此时的PH称为该水的饱和PH值,以PHS表示。

朗格利尔推导出了计算PHS的公式,即PHS=(9.7+A+B)-(C+D)

雷滋纳根据此提出了稳定指数分析判断公式:

2PHS-PH的差值来(PH水的实际PH值)判断水垢的析出。

此差值称为饱和指数,以R。

S。

I=2PHS-PH与6进行比较。

R。

S。

I=2PHS-PH〈6结垢

R。

S。

I=2PHS-PH=6不结垢也不腐蚀

R。

S。

I=2PHS-PH〉6腐蚀

注:

PHS=(9.7+A+B)-(C+D)A:

总溶解固体系数

B:

温度系数

C:

钙硬系数

D:

M-ALK碱度系数

如现在我们的冷却水分析结果是:

TDS:

1000A=0.2

水温:

35℃B=1.79

钙硬:

520C=2.70

M-ALK:

100-110D=2.00

则PHS=(9.7+A+B)-(C+D)=(9.7+0.2+1.79)-(2.70+2.00)=6.99

R.S.L=2PHS-PH=2*6.99-8.0=5.98≈6结果较好

四.循环冷却水系统中沉积物的控制

一,水垢的控制

我们知道在循环冷却水中最主要的的水垢是碳酸钙垢.因此日常水垢的控制主要是指碳酸钙水垢的控制.而磷酸盐垢和硅酸盐垢因在水中其成垢离子浓度一般都很少,是不容易析出的.

附:

冷却水中正磷酸根控制指标为PO43_为3.5-6ppm,实际控制结果为大约4ppm),

硅SiO2<150ppm,实际控制结果为:

5-9ppm)

附:

正磷分析结果:

附:

硅分析结果:

而对于碳酸钙垢的控制我们采用的采用的是:

1.>:

加酸

1.加硫酸,因为了防止增加水中的CL-,不加盐酸.加硝酸会带入硝酸跟,有利于硝化细菌的繁殖.由于重碳酸盐在水中常呈下列平衡:

Ca(HCO3)2=Ca2+↓++2HCO32-HCO32-=H++CO32-

所以加酸带入的H+,可使反应向左进行,使重碳酸盐稳定.

但要注意的是,加酸后,水的PH值会降低,如不注意控制而加酸过多,则会加速设备的腐蚀.

附:

PH分析结果

附:

ALK碱度分析结果:

附:

钙硬分析结果:

为防止硫酸腐蚀储罐和低温下不结晶,现夏季所用硫酸为:

98%冬季:

93%。

2>,投加阻垢剂分散剂

从水中析出碳酸钙等水垢的过程,就是微溶性盐从溶液中结晶沉淀的过程.按结晶动力学的观点,结晶的过程首先是生成晶核,形成少量的微晶粒,然后这种微小晶粒在溶液中由于热运动(布朗运动)不断的碰撞,与金属壁也不断的进行碰撞,碰撞的结果是提供了晶体生长的机会,使小晶体不断的变成了大晶体,也就是形成了覆盖传热面的垢层。

所以,从碳酸钙的结晶过程看,通过投加一种药剂,破坏其结晶的增长,就可以达到控制水垢的形成的目的.这就是投加分散剂.我们采用的是丙烯酸聚合物分散剂(N73202)。

二.污垢的控制

污垢的构成主要是尘土,杂物碎屑,菌藻尸体及其分泌物和细微水垢,腐蚀产物等构成.因此,欲控制好污垢,必须做到以下几点.

(1)降低补充水浊度

要求补充水浊度<5ppm,我们公司采用的补充水其浞度〈1ppm,

规范中规定,循环冷却水中悬浮物浓度<20PPM.,同时此控制指标也可以由冷却水的浊度直接反映出来。

附:

冷却水浊度分析结果:

关于悬浮物和浊度的控制,因我们的系统没有旁滤系统,只能借助于冷却水排污来实现,其排污的量我们综合考虑目前冷却水水质的硬度,电导,浓缩倍数,浊度和化学药剂的浓度及消耗来均衡确定的。

(2)做好循环冷却水在使用过程中的水质处理,控制微生物及细菌的滋生和黏泥的产生。

在进行防腐和杀生水质处理时,连续投加一定量的分散剂,以达到控制水垢的目的.分散剂能将粘合在一起的泥团杂质等分散成微粒使之悬浮在水中,随着水流流动而不沉积在换热面上,从而减少污垢对换热面的影响,同时部分悬浮物还可以随排污水而排出循环水系统.

(3)增加旁滤设备

说明,旁滤量一般取1%-5%的循环水量.我们的系统因没有设计旁滤系统,因此在实际运行操作中,只能依靠排污来调节水质.

三循环冷却水系统中金属的腐蚀及控制

冷却水系统要解决的第二个问题就是冷却水系统中的金属设备的腐蚀.

(1)冷却水中金属腐蚀的机理

我们知道碳钢金属的表面并不是均匀的.当它与冷却水接触的时候,会形成许多微小的腐蚀电池(微电池).其中活拨的部位叫阳极,腐蚀学上叫阳极区;而不活泼的部位叫阴极,腐蚀学上叫阴极区.

极反应式为:

在阳极区:

Fe→Fe2++2e

在阴极区:

½O2+H2O+2e→2OH-

由以上分析知道,金属的腐蚀是金属阳极区的阳极的溶解反应,金属的腐蚀破坏仅出现在腐蚀电池的阳极区.

因此,在腐蚀控制中,只要我们控制好腐蚀过程中的阳极反应和阴极反应两者中的任意一个电极反应的速度,则另一个电极反应的速度就会随之而受到控制,从而使整个腐蚀过程受到控制.(投加缓蚀剂N7359).其腐蚀情况可以由冷却水中的以下分析指标来判断.

附:

冷却水总铁分析结果:

TotalIron

附:

铜的分析结果:

(2)金属腐蚀的影响因素

冷却水系统中金属的腐蚀的影响因素,概括起来有:

化学因素,物理因素和微生物因素.

a)PH值

一般象如果该金属的氧化物溶于酸性水溶液而不溶于碱性水溶液的,例如镍(NIE),铁(Fe),镁(Mg),等,则该金属在低PH值时就会腐蚀的快些,而在高PH值下,就会腐蚀的慢一些.如:

Fe在PH>7后,腐蚀速度一般<0.25mm/a.

b)阴离子

其作用机理是会使金属上保护膜的保护性能降低,离子半径小,穿透性强,容易穿过膜层,置换氧原子形成氯化物,加速阳极过程的进行,使腐蚀加速,引起点蚀.对于不锈钢换热器,CL-是引起应力腐蚀的主要原因,因此,冷却水中CL-过高,会在设备上金属应力集中的地方,如换热器胀管的边缘部分迅速受到腐蚀破坏.目前要求的指标是<600PPM

CL-分析结果:

C)硬度

水中的钙离子与一些阴离子如控制不好会引起垢下腐蚀.

D)金属离子

水中的铜等重金属离子对冷却水中钢,铝,镁,锌等这几种金属起有害作用,防止置换反应作用发生.

附:

铜的分析结果:

锌离子在冷却水中对钢有缓蚀作用,因此锌在广泛用作冷却水的缓蚀剂的添加剂.一般在冷却水中的含量在(0.5—1ppm)即可.分析说明0.2ppm的锌即有对缓蚀剂明显的增效作用.其对金属的缓蚀效果见图表所示:

冷却水系统的锌分析结果:

E)余氯

氯是控制冷却水中微生物生长的最常用的杀生剂。

我们公司采用的是投加强氯精(N2819SZ)的方法来分解产生游离氯而进行杀生处理的.氯进入水中后,水解生成盐酸和次氯酸。

CL2+H2O→HCL+HCLO

其中,次氯酸是一种弱酸,在水中它可以电离:

HCLO→H++CLO-,

余氯是指与水中的金属离子和有机化合物反应后余下的氯被称为余氯,或叫活性氯.在冷却水系统中,余氯的量的多少对碳钢是有一定的腐蚀影响的.可参见余氯对碳钢的腐蚀速度曲线图可知

当水中的余氯浓度<0.4ppm的时候,碳钢的腐蚀速度很低;当水中的余氯浓度为0.5ppm的时候,碳钢的腐蚀速度开始迅速上升;余氯浓度达到0.7ppm的时候,碳钢的腐蚀速度开始超过<<设计规范>>容许的上限值(0.125mm/a).所以我们要根据分析结果,既要保证有一定的加氯量,又要保证余氯量在我们要求的范围之内:

0.2—0.5ppm.以下是我们冷却水系统开车以来的余氯分析结果和我们与NALCO服务工程师一起测定的相关余氯控制数椐.

从分析结果看,微生物数量基本稳定在500以下,杀生效果较好,但超出余氯控制指标的频次还是很多,虽然现在已经作到了每天根据实验室的分析结果来及时的调整加药量,但根据运行经验,余氯量的多少跟温度,天气,风速,排污量及药效等诸多因素有关,还需要继续努力做好这方面的控制工作.

余氯测试结果:

 

F)微生物及黏泥

微生物是对所有个体微小的单细胞和结构极为简单的多细胞以及没有细胞结构的低等生物的总称.

微生物及危害

在冷却水系统中,一些藻类和细菌在代谢中会产生一种胶状的,黏性的或黏泥状的,附着力很强的沉积物,并以这些微生物为主体,混有泥砂,无机物和尘土等.这些沉积物覆盖在金属表面上,降低冷却水的冷却效果,阻止冷却水中的缓蚀剂,阻垢剂和杀生剂到达金属的表面发挥缓蚀阻垢和杀生作用,并使金属表面形成差异腐蚀电池而发生沉积物下腐蚀(垢下腐蚀).

微生物黏泥引起的故障

1.黏泥附着在换热(冷却)部位的金属表面上,降低冷却水的冷却效果.

2.大量的黏泥将堵塞换热器中冷却水的通道,从而使冷却水无法工作,少量的黏泥则减少冷却水的通道的截面积,从而降低冷却水的流量和冷却效果,增加泵压.

3.黏泥积集在冷却塔的填料表面或中间缝隙中,堵塞了冷却水的通过,降低冷却塔的冷却效果.

4.黏泥覆盖在换热器内金属表面,阻止缓蚀剂与阻垢剂到达金属表面发挥其缓蚀和阻垢作用,阻止杀生剂杀灭黏泥中和黏泥下的微生物,降低这些药的功效.

5.黏泥附着在金属表面,形成差异腐蚀电池,引起这些金属设备的腐蚀.

6.大量的黏泥,尤其是藻类,存在于冷却水系统中的设备上,影响了冷却水系统的外观.

影响微生物黏泥的因素主要有:

1.营养源(补充水,大气和设备泄露),判断标准:

COD<10Mg/L.

2.水温,最佳温度:

30-40℃

3.PH值,一般冷却水的PH值控制在7.0-9.2之间,该范围正处在微生物繁殖的最佳PH范围.

4.溶解氧

5.光.主要是藻类,其他微生物则不需要光能.

6.细菌数量,一般认为,每毫升水中当细菌数在1000以下时,故障发生很少,当在10000个以上的时候,则黏泥故障容易发生.我们的控制指标是5*100000个.现在基本保持在500以下.

7.悬浮物.黏泥的形成与悬浮物密切相关,一般要求冷却水中的悬浮物浓度不大与20Mg/L,我们的系统目前该指标控制在<10Mg/L.

8.流速的影响.

微生物的控制方法:

1.控制水质.主要控制冷却水中的氧含量,PH值,悬浮物和微生物的养料.(油类)

2.清洗.(物理和化学清洗),除去养料,以及对微生物的剥离去金属表面.清洗还可以使清洗后剩下的微生物直接暴漏在外,从而为杀生剂直接达到微生物表面杀死它们创造了条件..

3.阻止阳光照射.

4.旁流过滤.(1%-5%循环水量经过旁滤装置进行连续的过滤)我们公司没有设置.

5.投加杀生剂(Biocide),这是最有效和最常用的方法.(说明:

杀生剂的要求是:

通过控制微生物的生长,从而控制冷却水系统中的微生物腐蚀和微生物黏泥.

我们冷却水系统所使用的化学药剂及控制

1>杀生剂:

氧化性杀生剂和非氧化性杀生剂.

氧化性杀生剂:

氯,次氯酸盐等.反应式:

CL2+H2O→HCL+HCLO

HCLO→H++CLO-

次氯酸是一种极强的氧化剂,它易于扩散通过微生物的细胞膜,破坏分解微生物.

循环冷却水系统进行微生物控制的时候,水中游离的活性氯的浓度一般控制在0.5-1Mg/L,这时水中绝大多数微生物的生长都将得到控制.

次氯酸盐.(次氯酸钠NaCLO,次氯酸钙Ca(CLO)2),其杀生机理也是它们在水中能生成次氯酸而具有杀生作用.(说明:

次氯酸盐即能杀生又对设备或管道上的黏泥具有一定的剥离作用.)

非氧化性杀生剂(N7330),不定期的根据水质要求,为防止细菌产生耐药性而降低N2819SZ强氯精的杀生力.因现在依靠强氯精的杀生效果已经很好,所以该药用了很少,目前只是出于防止微生物变异和有效剥离冷却水管线及换热器内表面中可能会存在的黏泥及污垢,我们现采用高浓度(150PPM)冲击投加的方式,来进一步对微生物进行控制.

2>阻垢缓蚀剂(N7359)(含磷复合药剂)

该水处理剂是一种含锌型缓蚀剂,其中的锌离子能加速保护膜的形成(Zn(OH)2),抑制腐蚀,直到金属表面生成一层致密和耐久的保护性薄膜为止.

锌离子的加入,碳钢的腐蚀速度迅速降低,锌盐与聚磷酸盐之间有明显的协同作用,故该药剂的使用浓度可以降到很低.我们的系统现在控制指标是正磷酸根Oth-PO43浓度为3.5-6ppm_,在实际运行中,一般控制在4ppm,(见LAB分析报告).一个目的是既保证缓蚀效果,防止过高浓度预防磷酸盐垢,又要考虑降低费用.该药剂和分散剂N73202的加入都是依靠Trasar的在线控制实现的,Trasar的探头(Sensor)通过与水中N73202所添加的感光物质的扫描来记录分散剂的浓度,同时在设定分散剂浓度的基础上(22.5±1ppm)通过调节设定加药计量泵的行程来达到同步保证缓蚀剂浓度和分散剂浓度的目的.(注:

目前两者的行程设置大致为3:

1,即两台分散剂加药泵(N73202)频率设置为100%,行程设置为60%,药剂浓度设置21.5-23.5ppm进行加药泵的开启和停止,以保证冷却水中分散剂药剂的浓度稳定在21.5-23.5ppm之间.以确保分散效果,防止结垢.而两台缓蚀剂加药泵(N7359)频率设定为100%,行程一台设定为20%,另一台则根据实验室分析报告(正磷)来调整,一般在15%-20%之间调整.(注:

在巡检中不要随便调整).

附泵设定照片:

3)丙烯酸聚合物分散剂(N73202)

防止形成大的结晶颗粒,尽量使系统中存在小的固体悬浮物,特别于流速低的地方防止凝聚及形成沉积物.

4)硫酸

控制原理:

PH设定,根据钙硬,温度,总溶解固体和碱度,根据帕科拉兹结垢指数(P.S.L)=2PHS-PH=6的总控制要求,计算出相应的碱度,根据PH和碱度的对应关系,进行PH控制仪的设定.(注:

PH的设定差值控制在0.05PH),以达到调节加酸量从而调节碱度和水质的目的.说明:

此设定值标注在在现场加药间内的PH分析仪的上面,巡检时只需确认在硫酸泵工作时是否在控制值内即可,同时对泵的行程设定,考虑到取样的滞后因素,我们设定在30%--40%之间适时调整,巡检人

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1