毕业设计简易数字电压表的设计.docx

上传人:b****6 文档编号:6524507 上传时间:2023-01-07 格式:DOCX 页数:22 大小:437.38KB
下载 相关 举报
毕业设计简易数字电压表的设计.docx_第1页
第1页 / 共22页
毕业设计简易数字电压表的设计.docx_第2页
第2页 / 共22页
毕业设计简易数字电压表的设计.docx_第3页
第3页 / 共22页
毕业设计简易数字电压表的设计.docx_第4页
第4页 / 共22页
毕业设计简易数字电压表的设计.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

毕业设计简易数字电压表的设计.docx

《毕业设计简易数字电压表的设计.docx》由会员分享,可在线阅读,更多相关《毕业设计简易数字电压表的设计.docx(22页珍藏版)》请在冰豆网上搜索。

毕业设计简易数字电压表的设计.docx

毕业设计简易数字电压表的设计

郑州电力职业技术学院毕生业论文

 

题目:

简易数字电压表的设计

 

系别电力工程系

专业电气自动化

班级电气二班

学号1440501005

姓名张强

论文成绩

指导教师

答辩成绩

主答辩教师

综合成绩

答辩委员会主任

 

摘要

单片机是一种集成电路芯片,采用超大规模技术把具有数据处理能力(如算术运算,逻辑运算、数据传送、中断处理)的微处理器(CPU)。

随着单片机技术的飞速发展,各种单片机蜂拥而至,单片机技术已成为一个国家现代化科技水平的重要标志。

单片机可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。

单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可以软件控制来实现,并能够实现智能化。

现在单片机控制范畴无所不在,例如通信产品、家用电器、智能仪器仪表、过程控制和专用控制装置等等,单片机的应用领域越来越广泛。

本毕业设计的课题是“数字电压表的设计”。

主要考核我们对单片机技术,编程能力等方面的情况。

观察独立分析、设计单片机的能力,以及实际编程技能。

本课题主要解决A/D转换、数据处理及显示控制等三个模块。

控制系统采用AT单片机,A/D转换采用ADC0804。

关键词:

单片机,A/D,AT89C52转换,ADC0804

 

前言1

1简易数字电压表设计两种方案3

1.1由数字电路及芯片构建3

1.2由单片机系统及A/D转换芯片构建3

2单片机简介及本设计单片机的选择5

2.1常用单片机的特点比较及本设计单片机的选择5

2.2本设计使用的单片机的简介6

2.3单片机管脚说明7

3各种显示器件的介绍和选择10

3.1常用显示器件简介10

3.2LED显示器件简介10

4模数(A/D)转换芯片的选择12

4.1常用的A/D芯片简介12

4.2A/D芯片的选择13

5总体设计15

5.1技术要求:

15

5.2设计方案:

15

5.3系统硬件电路的设计16

6硬件电路系统模块的设计17

6.1单片机系统17

6.2A/D转换芯片与单片机的连接18

6.3时钟电路18

6.4复位电路19

6.5显示电路设计20

7系统的调试21

7.1硬件调试21

7.2软件件调试21

7.3软硬联调22

8数据结果分析23

8.1系统调试和校准23

8.2测试数据23

总结24

致谢25

参考文献26

附件1元器件清单27

附件2C程序28

前言

简易数字电压表(DigitalVoltmeter)出现在50年代初,60年代末发起来的电压测量仪表,简称DVM,它采用的是数字化测量技术,把连续的模拟量,也就是连续的电压值转变为不连续的数字量,加以数字处理然后再通过显示器件显示。

这种电子测量的仪表之所以出现,一方面是由于电子计算机的应用逐渐推广到系统的自动控制信实验研究的领域,提出了将各种被观察量或被控制量转换成数码的要求,即为了实时控制及数据处理的需要;另一方面,也是电子计算机的发展,带动了脉冲数字电路技术的进步,为数字化仪表的出现提供了条件。

所以,数字化测理仪表的产生与发展与电子计算机的发展是密切相关的;同时,为革新电子测量中的烦锁和陈旧方式也催促了它的飞速发展,如今,它又成为向智能化仪表发展的必要桥梁。

如今,数字电压表已绝大部分已取代了传统的模拟指针式电压表。

因为传统的模拟指针式电压表功能单一,精度低,读数的时候也非常不方便,很容易出错。

而采用单片机的数字电压表由于测量精度高,速度快,读数时也非常的方便,抗干扰能力强,可扩展性强等优点已被广泛的应用于电子及电工的测量,工业自动化仪表,自动测试系统等智能化测量领域。

显示出强大的生命力。

数字电压表最初是伺服步进电子管比较式,其优点是准确度比较高,但是采样速度慢,重量达几十公斤,体积大。

继之出现了斜波式电压表,它的速度方面稍有提高,但是准确度低,稳定性差,再后来出现了比较式仪表改进逐次渐近式结构,它不仅保持了比较式准确度高的优点,而且速度也有了很大的提高,但它有一缺点是抗干扰能力差,很容易受到外界各种因素的影响。

随后,在斜波式的基础上双引伸出阶梯波式,它的唯一的进步是成本降低了,可是准确宽,速以及抗干扰能力都未能提高。

而现在,数字电压表的发展已经是非常的成熟,就原理来讲,它从原来的一,二种已发展到多种,在功能上讲,则从测单一参数发展到能测多种参数;从制作元件来看,发展到了集成电路,准确度已经有了很大的提高,精度高达1NV;读数每秒几万次,而相对以前,它的价格也有了降低了很多。

目前实现电压数字化测量的方法仍然模-数(A/D)转换的方法。

而数字电压表种类繁多,型号新异,目前国际仍未有统一的分类方法。

而常用的分类方法有如下几种:

1.按用途来分:

有直流数字电压表,交、直流数字电压表,交直流万用表等。

2.按显示位数来分:

有4位,5位,6位,7位,8位等。

3.按测量速度来分:

有低准确度,中准确度,高准确度等。

4.按测量速度来分:

有低速,中速,高速,超高速等。

5.但在日常生活中,数字电压表一般是按照原理不同进行分类的,目前大致分为以下几类:

比较式,电压——时间变换式,积分式等。

在电量的测量中,电压、电流和频率是最基本的三个被测量。

其中,电压量的测量最为经常。

而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。

另外,由于数字式仪器具有读数准确方便、精度高、误差小、灵敏度高和分辨率高、测量速度快等特点而倍受用户青睐,数字式电压表就是基于这种需求而发展起来的.

1数字电压表设计两种方案

设计数字电压表有多种的设计方法,方案是多种多样的,由于大规模集成电路数字芯片的高速发展,各种数字芯片品种多样,导致对模拟数据的采集部分的不一致性,进而又使对数据的处理及显示的方式的多样性。

又由于在现实的工作生活中,电压表的测量测程范围是比较大的,所以必须要对输入电压作分压处理,而各个数据处理芯片的处理电压范围不同,则各种方案的分段也不同。

下面介绍两种数字电压表的设计方案。

1.1由数字电路及芯片构建

这种设计方案是由模拟电路与数字电路两大部分组成,模拟部分包括输入放大器、A/D转换器和基准电压源;数字部分包括计数器、译码器、逻辑控制器、振荡器和显示器。

其中,A/D转换器是它的核心器件,它将输入的模拟量转换成数字量。

模拟电路和数字电路是相互联系的,由逻辑控制电路产生控制信号,按规定的时序将A/D转换器中个组模拟开关接通或断开,保证A/D转换正常进行。

A/D转换结果通过计数译码电路变换成段码,最后驱动显示器显示出相应的数值。

此方案设计其优点是,设计成本低,能够满足一般的电压测量。

但设计不灵活,都是采用纯硬件电路。

很难将其在原有的基础上进行扩展。

1.2由单片机系统及A/D转换芯片构建

这种方案是利用单片机系统与模数转换芯片、显示模块等的结合构建数字电压表。

由于单片机的发展已经成熟,利用单片机系统的软硬件结合,可以组装出许多的应用电路来。

此方案的原理是模数(A/D)转换芯片的基准电压端,被测量电压输入端分别输入基准电压和被测电压。

模数(A/D)转换芯片将被测量电压输入端所采集到的模拟电压信号转换成相应的数字信号,然后通过对单片机系统进行软件编程,使单片机系统能按规定的时序来采集这些数字信号,通过一定的算法计算出被测量电压的值。

最后单片机系统将计算好了的被测电压值按一定的时序送入显示电路模块加以显示。

此方案不仅能够继承上一种方案的各种优点,还能改进上一种设计方案设计不灵活,难与在原基础上进行功能扩展等不足。

2单片机简介及本设计单片机的选择

2.1常用单片机的特点比较及本设计单片机的选择

综合上一章提到的两种设计方案的各方面优点及其在现在的所设计电压表的实用性,我们选择第二种电压表设计方案,即由单片机系统及数字芯片构建的方法来我们本次设计。

在这一设计中,我们涉及到了一个关键系统模块——单片机系统模块,而目前单片机的种类是很繁多的,主要有主流的8位单片机和高性能的32位单片机,结合本设计各方面因素,8位单片机对于本设计已经是绰绰有余了,但将用哪一种类8的单片机呢。

在这里,不得不先简单的介绍一下几种常用的8单片机。

单片机是指一个集成在一块芯片上的完整计算机系统,具有一个完整计算机所需要的大部分部件:

CPU,内存,总线系统等。

而目前常用的单片机的8位有51系列单片机,AVR单片机,PIC单片机。

应用最广的8位单片机还是intel的51系列单片机。

51系列单片机的特点是:

硬件结构合理,指令系统规范,加之生产历史悠久,世界有许多芯片公司都买了51的芯片核心专利技术,并在其基础上扩充其性能,使得芯片的运行速度变得更快,性价比更高。

AVR单片机是atmel公司推出较新的单片机,它的显著特点是:

高性能,低功能,高速度,指令单周期为主,但性格方面比51单片机要高。

有专门的I/O方向寄存器。

虽然有转强的驱动电压,但I/O口使用不比51单片机方便。

PIC单片机系列是美国微芯公司的产品,也是市面上增长最快的单片机之一,属精简指令集单片机,其特点是:

高速度,高性能,但在性格方面比51单片机要高,也有专门的I/O方向寄存器,I/O口使用不比51单片机方便。

综合以上各种单片机的基本性能及本设计的满足需要,我们将选择51系列单片机。

2.2本设计使用的单片机的简介

单片机采用MCS-51系列单片机。

由ATMEL公司生产的AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash存储器。

使用Atmel公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。

在单芯片上,拥有灵巧的8位CPU和在线系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、有效的解决方案。

AT89S52具有以下标准功能:

8k字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。

空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。

掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。

而且,它还具有一个看门狗(WDT)定时/计数器,如果程序没有正常工作,就会强制整个系统复位,还可以在程序陷入死循环的时候,让单片机复位而不用整个系统断电,从而保护你的硬件电路。

AT89S52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口,片上Flash允许程序存储器在系统可编程,亦适于常规编程器。

其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。

其芯片外观及引脚图如下:

图2.1

2.3单片机管脚说明

VCC:

供电电压。

GND:

接地。

P0口:

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89S52的一些特殊功能口,如下表所示:

表2.1AT89S52引脚功能表

管脚

备选功能

P3.0RXD

(串行输入口)

P3.1TXD

(串行输出口)

P3.2/INT0

(外部中断0)

P3.3/INT1

(外部中断1)

P3.4T0

(记时器0外部输入)

P3.5T1

(记时器1外部输入)

P3.6/WR

(外部数据存储器写选通)

P3.7/RD

(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:

外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:

反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:

来自反向振荡器的输出。

3各种显示器件的介绍和选择

3.1常用显示器件简介

本次设计中有显示模块,而常用的显示器件比较多,有数码管,LED点阵,1602液晶,12864液晶等。

数码管是最常用的一种显示器件,它是由几个发光二极管组成的8字段显示器件,其特点是价格非常的便宜,使用也非常的方便,显示效果非常的清楚。

小电流下可以驱动每光,发光响应时间极短,体积小,重量轻,抗冲击性能好,寿命长。

但数码管只能是显示0——9的数据。

不能够显示字符。

这也是数码管的不足之处。

LED点阵显示器件是由好多个发光二极管组成的。

具有高亮度,功耗低,视角大,寿命长,耐湿,冷,热等特点,LED点阵显示器件可以显示数字,英文字符,中文字符等。

1602液晶是工业字符型液晶,能够同时显示16*2即32个字符。

1602液晶模块内部的字符发生存储器已经存储了160个不同的点阵字符图形,这些字这些字符有:

阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,每一个字符都有一个固定的代码。

使用时直接编写软件程序按一定的时序驱动即可。

它的特点是显示字迹清楚,价格相对便宜。

12864液晶也是一种工业字符型液晶,它不仅能够显示1602液晶所可以显示的字符,数字等信息,而且还可以显示8*4个中文汉字和一些简单的图片,显示信息也非常的清楚。

使用时也直接编写软件程序按一定的时序驱动即可。

不过它的价格比1602液晶贵了很多。

3.2LED显示器件简介

在本设计中采用的是4段LED数码管来显示电压值。

LED具有耗电低、亮度高、视角大、线路简单、耐震及寿命长等优点,它由4个发光二极管组成,其中7个按‘8’字型排列,另一个发光二极管为圆点形状,位于右下角,常用于显示小数点。

把8个发光二极管连在一起,公共端接高电平,叫共阳极接法,相反,公共端接低电平的叫共阴极接法,我们采用共阳极接法。

当发光二极管导通时,相应的一段笔画或点就发亮,从而形成不同的发光字符。

其8段分别命名为dpgfedcba。

例如,要显示“0”,则dpgfedcba分别为:

11000000B;要显示“A”,则dpgfedcba分别为:

00010001B(共阳极)。

若要显示多个数字,只要让若干个数码管的位码循环为低电平就可以了。

根据设计要求,显示电路需要至少4位LED数码管来显示电压值,我们再多加一位用来显示电压单位“V”,则有4位LED循环显示。

利用单片机的I/O口驱动LED数码管的亮灭,设计中由P0口驱动LED的段码显示,即显示字符,由P2口选择LED位码,即选择点亮哪位LED来显示。

另外,一般I/O接口芯片的驱动能力是很有限的,在LED显示器接口电路中,输出口所能提供的驱动电流一般是不够的尤其是设计中需要用到多位LED,此时就需要增加LED驱动电路。

常用的是TTL或MOS集成电路驱动器,在本设计中采用了AD0804芯片驱动电路。

4模数(A/D)转换芯片的选择

A/D转换器是模拟量输入通道中的一个环节,单片机通过A/D转换器把输入模拟量变成数字量再处理。

随着大规模集成电路的发展,目前不同厂家已经生产出了多种型号的A/D转换器,以满足不同应用场合的需要。

如果按照转换原理划分,主要有3种类型,即双积分式A/D转换器、逐次逼近式A/D转换器和并行式A/D转换器。

目前最常用的是双积分和逐次逼近式。

双积分式A/D转换器具有抗干扰能力强、转换精度高、价格便宜等优点,比如ICL71XX系列等,它们通常带有自动较零、七段码输出等功能。

与双积分相比,逐次逼近式A/D转换的转换速度更快,而且精度更高,比如ADC0808、ADC0809等,它们通常具有8路模拟选通开关及地址译码、锁存电路等,它们可以与单片机系统连接,将数字量送单片机进行分析和显示。

4.1常用的A/D芯片简介

常用的A/D芯片有AD0809,AD0832,TLC2543C等几种。

下面简单介绍一下这三种芯片。

AD0809是8位逐次逼近型A/D转换器,它是由一个8路的模拟开关、一个地址锁存译码器、一个A/D转换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。

些A/D转换器是的特点是8位精度,属于并行口,如果输入的模拟量变化大快,必须在输入之前增加采样电路。

AD0832也是8位逐次逼近型A/D转换器,可支持致命伤个单端输入通道和一个差分输入通道。

它易于和微处理器接口或独立使用;可满量程工作;可用地址逻辑多路器选通各输入通道。

TLC2543C是12位开关电容逐次逼近A/D转换,每个器件有三个控制输入端,片选,输入/输出时钟以及地址输入端。

它可以从主机高速传输转换数据。

它有高速的转换,通用的控制能力,具有简化比率转换,刻度以及模拟电路与逻辑电路和电源噪声隔离,耐高温等特点。

4.2A/D芯片的选择

原计划用ADC0809,但由于器件没有供应上,所以用和ADC0804来代替,所以,本设计中采用逐次逼近式A/D转换器的ADC0804芯片。

ADC0804主要技术指标如下:

(1)高阻抗状态输出

(2)分辨率:

8位(0~255)

(3)存取时间:

135ms

(4)转换时间:

100ms

(5)总误差:

-1~+1LSB

(6)工作温度:

ADC0804C为0度~70度;ADC0804L为-40度到80度

(7)模拟输入电压范围:

0V~5V

(8)参考电压:

2.5V

(9)工作电压:

5V

(10)输出为三态结构

ADC0804引脚功能:

接脚说明见4.2:

ADC0804为一只具有20引脚8位CMOS连续近似的A/D转换器,引脚功能说明:

1.PIN1(CS):

ChipSelect,与RD、WR接脚的输入电压高低一起判断读取或写入与否,当其为低位准(low)时会active。

2.PIN2(RD):

Read。

当CS、RD皆为低位准(low)时,ADC0804会将转换后的数字讯号经由DB7~DB0输出至其它处理单元。

3.PIN3(WR):

启动转换的控制讯号。

当CS、WR皆为低位准(low)时ADC0804做清除的动作,系统重置。

当WR由0→1且CS=0时,ADC0804会开始转换信号,此时INTR设定为高位准(high)。

4.PIN4、PIN19(CLKIN、CLKR):

频率输入/输出。

频率输入可连接处理单元的讯号频率范围为100kHz至800kHz。

而频率输出频率最大值无法大于640KHz,一般可选用外部或内部来提供频率。

若在CLKR及CLKIN加上电阻及电容,则可产生ADC工作所需的时序,其频率约为:

5.PIN5(INTR):

中断请求。

转换期间为高位准(high),等到转换完毕时INTR会变为低位准(low)告知其它的处理单元已转换完成,可读取数字数据。

6.PIN6、PIN7(VIN(+)、VIN(-)):

差动模拟讯号的输入端。

输入电压VIN=VIN(+)-VIN(-),通常使用单端输入,而将VIN(-)接地。

7.PIN8(AGND):

模拟电压的接地端。

8.PIN9(VREF)

图4.2ADC0804引脚电路图

 

5总体设计

5.1技术要求:

基本功能:

电压测量范围0~5V;能用数码管显示电压值;采集电压的大小(保留小数点后3位);整个电压采集显示过程通过两个按键控制启动和停止;系统具有复位功能。

5.2设计方案:

根据上述,我们选择单片机与A/D转换芯片结合的方法实现本设计。

使用的基本元器件是:

AT89C52单片机,AD0809模数转换芯片,LED显示器,开关,按键,电容,电阻,晶振,标准电源等等。

设计的基本框图如下

图5.1设计的基本框图

5.3系统硬件电路的设计

数字电压测量电路由A/D转换、数据处理及显示控制等组成。

A/D转换由集成电路0809完成。

0809具有8路拟输入端口,地址线(23~-25脚)可决定对哪一路模拟输入作A/D换。

22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存。

6脚为测试控制,当输入一个2uS宽高电平脉冲时,就开始A/D转换。

7脚为A/D转换结束标志,当A/D转换结束时,7脚输出高电平。

9脚为A/D转换数据输出允许控制,当OE脚为高电平时,A/D转换数据从该端口输出。

10脚为0809的时钟输入端,利用单片机30脚的六分频晶振频率再通过14024二分频得到1MHz时钟。

单片机的P1、P3.0~P3.3端口作为四位LED数码管显示控制。

P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。

P0端口作A/D转换数据读入用,P2端口用作0809的A/D转换控制。

6硬件电路系统模块的设计

根据上述选择的各元器件,各电路模块的电路图如下描述。

6.1单片机系统

单片机最小系统包括晶振电路,复位电路,电源。

其原理图如下:

图6.1复位电路

此模块中,单片机的晶振是12MHZ,C1和C2的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1