机械振机械波知识点例题解答.docx

上传人:b****6 文档编号:6455138 上传时间:2023-01-06 格式:DOCX 页数:57 大小:578.17KB
下载 相关 举报
机械振机械波知识点例题解答.docx_第1页
第1页 / 共57页
机械振机械波知识点例题解答.docx_第2页
第2页 / 共57页
机械振机械波知识点例题解答.docx_第3页
第3页 / 共57页
机械振机械波知识点例题解答.docx_第4页
第4页 / 共57页
机械振机械波知识点例题解答.docx_第5页
第5页 / 共57页
点击查看更多>>
下载资源
资源描述

机械振机械波知识点例题解答.docx

《机械振机械波知识点例题解答.docx》由会员分享,可在线阅读,更多相关《机械振机械波知识点例题解答.docx(57页珍藏版)》请在冰豆网上搜索。

机械振机械波知识点例题解答.docx

机械振机械波知识点例题解答

一、机械振动

1、机械振动:

物体(或物体的一部分)在某一中心位置两侧做的往复运动.

振动的特点:

①存在某一中心位置;②往复运动,这是判断物体运动是否是机械振动的条件.

产生振动的条件:

①振动物体受到回复力作用;②阻尼足够小;

2、回复力:

振动物体所受到的总是指向平衡位置的合外力.

①回复力时刻指向平衡位置;②回复力是按效果命名的,可由任意性质的力提供.可以是几个力的合力也可以是一个力的分力;③合外力:

指振动方向上的合外力,而不一定是物体受到的合外力.④在平衡位置处:

回复力为零,而物体所受合外力不一定为零.如单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零.

3、平衡位置:

是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位置;平衡位置通常在振动轨迹的中点。

“平衡位置”不等于“平衡状态”。

平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。

(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)

二、简谐振动及其描述物理量

1、振动描述的物理量

(1)位移:

由平衡位置指向振动质点所在位置的有向线段.

①是矢量,其最大值等于振幅;

②始点是平衡位置,所以跟回复力方向永远相反;

③位移随时间的变化图线就是振动图象.

(2)振幅:

离开平衡位置的最大距离.

①是标量;②表示振动的强弱;

(3)周期和频率:

完成一次全变化所用的时间为周期T,每秒钟完成全变化的次数为频率f.

①二者都表示振动的快慢;

②二者互为倒数;T=1/f;

③当T和f由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关.

2、简谐振动:

物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动.

①受力特征:

回复力F=—KX。

②运动特征:

加速度a=一kx/m,方向与位移方向相反,总指向平衡位置。

简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

说明:

①判断一个振动是否为简谐运动的依据是看该振动中是否满足上述受力特征或运动特征。

②简谐运动中涉及的位移、速率、加速度的参考点,都是平衡位置.

【例1】如图,轻质弹簧上端固定,下端连结一小球,平衡时小球处于O位置,现将小球由O位置再下拉一小段距离后释放(在弹性限度内),试证明释放后小球的上下振动是简谐振动,

证明:

设小球的质量为m,弹簧的劲度系数为k,小球处在O位置有:

mg—kΔx=0………①

式中Δx为小球处在O位置时弹簧的伸长量.

再设小球离开O点的位移x(比如在O点的下方),并取x为矢量正方向,

此时小球受到的合外力∑Fx为:

∑Fx=mg-k(x+Δx)②

由①②两式可得:

∑Fx=-kx,

所以小球的振动是简谐振动,O点即其振动的平衡位置.

三.弹簧振子:

1、一个可作为质点的小球与一根弹性很好且不计质量的弹簧相连组成一个弹簧振子.一般来讲,弹簧振子的回复力是弹力(水平的弹簧振子)或弹力和重力的合力(竖直的弹簧振子)提供的.弹簧振子与质点一样,是一个理想的物理模型.

2、弹簧振子振动周期:

T=2

,只由振子质量和弹簧的劲度决定,与振幅无关,也与弹簧振动情况(如水平方向振动或竖直方向振动或在光滑的斜面上振动或在地球上或在月球上或在绕地球运转的人造卫星上)无关。

3、可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是

这个结论可以直接使用。

4、在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。

【例2】如图所示,在质量为M的无下底的木箱顶部用一轻弹簧悬挂质量均为m(M≥m)的D、B两物体.箱子放在水平地面上,平衡后剪断D、B间的连线,此后D将做简谐运动.当D运动到最高点时,木箱对地压力为()

A、Mg;B.(M-m)g;C、(M+m)g;D、(M+2m)g

【解析】当剪断D、B间的连线后,物体D与弹簧一起可当作弹簧振子,它们将作简谐运动,其平衡位置就是当弹力与D的重力相平衡时的位置.初始运动时D的速度为零,故剪断D、B连线瞬间D相对以后的平衡位置的距离就是它的振幅,弹簧在没有剪断D、B连线时的伸长量为x1=2mg/k,在振动过程中的平衡位置时的伸长量为x2=mg/k,故振子振动过程中的振幅为A=x2-x1=mg/k

D物在运动过程中,能上升到的最大高度是离其平衡位移为A的高度,由于D振动过程中的平衡位置在弹簧自由长度以下mg/k处,刚好弹簧的自由长度处就是物D运动的最高点,说明了当D运动到最高点时,D对弹簧无作用力,故木箱对地的压力为木箱的重力Mg.

四、振动过程中各物理量的变化情况

振动体位置

位移X

回复力F

加速度a

速度v

势能

动能

方向

大小

方向

大小

方向

大小

方向

大小

平衡位置O

0

0

0

最大

最小

最大

最大位移处A

指向A

最大

指向O

最大

指向O

0→最大

0

最大

最小

平衡位置O→最大位移处A

指向A

0→最大

指向O

0→最大

指向O

最大

O→A

最大→0

最小→最大

最大→最小

最大位移处A→平衡位置O

指向A

最大→0

指向O

最大→0

指向O

最大→0

A→O

0→最大

最大→最小

最小→最大

简谐运动的位移、回复力、加速度、速度都随时间做周期性变化(正弦或余弦函数),变化周期为T,振子的动能、势能也做周期性变化,周期为T/2。

①凡离开平衡位置的过程,v、Ek均减小,x、F、a、EP均增大;凡向平衡位置移动时,v、Ek均增大,x、F、a、EP均减小.

②振子运动至平衡位置时,x、F、a为零,EP最小,v、Ek最大;当在最大位移时,x、F、a、EP最大,v、Ek最为零;

③在平衡位置两侧的对称点上,x、F、a、v、Ek、EP的大小均相同.

【例3】如图所示,一弹簧振子在振动过程中,经a、b两点的速度相同,若它从a到b历时0.2s,从b再回到a的最短时间为0.4s,则该振子的振动频率为()。

(A)1Hz;(B)1.25Hz(C)2Hz;(D)2.5Hz

解析:

振子经a、b两点速度相同,根据弹簧振子的运动特点,不难判断a、b两点对平衡位置(O点)一定是对称的,振子由b经O到a所用的时间也是0.2s,由于“从b再回到a的最短时间是0.4s,”说明振子运动到b后是第一次回到a点,且Ob不是振子的最大位移。

设图中的c、d为最大位移处,则振子从b→c→b历时0.2s,同理,振子从a→d→a,也历时0.2s,故该振子的周期T=0.8s,根据周期和频率互为倒数的关系,不难确定该振子的振动频率为1.25Hz。

综上所述,本题应选择(B)。

五、简谐运动图象

1.物理意义:

表示振动物体(或质点)的位移随时间变化的规律.

2.坐标系:

以横轴表示时间,纵轴表示位移,用平滑曲线连接各时刻对应的位移末端即得

3.特点:

简谐运动的图象是正弦(或余弦)曲线.

4.应用:

①可直观地读取振幅A、周期T以及各时刻的位移x;

②判定各时刻的回复力、速度、加速度方向;

③判定某段时间内位移、回复力、加速度、速度、动能、势能、等物理量的变化情况

注意:

①振动图象不是质点的运动轨迹.

②计时点一旦确定,形状不变,仅随时间向后延伸。

③简谐运动图像的具体形状跟计时起点及正方向的规定有关。

【例4】(1995年全国)一弹簧振子作简谐振动,周期为T()

A.若t时刻和(t+Δt)时刻振子运动位移的大小相等、方向相同,则Δt一定等于T的整数倍

B.若t时刻和(t+Δt)时刻振子运动速度的大小相等、方向相反,则上t一定等于T/2的整数倍

C.若Δt=T,则在t时刻和(t+Δt)时刻振子运动的加速度一定相等

D.若Δt=T/2,则在t时刻和(t十Δt)时刻弹簧的长度一定相等

解析:

做简谐运动时,振子由平衡位置到最大位移,再由最大位移回到平衡位置,两次经过同一点时,它们的位移大小相等、方向相同,其时间间隔并不等于周期的整数倍,选项A错误。

同理在振子由指向最大位移,到反向最大位移的过程中,速度大小相等、方向相反的位里之间的时间间隔小于T/2,选项B错误。

相差T/2的两个时刻,弹黄的长度可能相等,振子从平衡位置开始振动、再回到平衡位置时,弹簧长度相等、也可能不相等、选项D错误。

若Δt=T,则根据周期性,该振子所有的物理量应和t时刻都相同,a就一定相等,所以,选项C正确。

本题也可通过振动图像分析出结果,请你自己尝试一下。

【例5】如图所示,一弹簧振子在光滑水平面内做简谐振动,O为平衡位置,A,B为最大位移处,当振子由A点从静止开始振动,测得第二次经过平衡位置所用时间为t秒,在O点上方C处有一个小球,现使振子由A点,小球由C点同时从静止释放,它们恰好到O点处相碰,试求小球所在C点的高度H是多少?

解析:

由已知振子从A点开始运动,第一次经过O点的时间是1/4周期,第二次经过O点是3/4周期,设其周期T,所以有:

t=3T/4,T=4t/3;

振子第一次到O点的时间为

;振子第二次到点的时间为

;振子第三次到O点的时间为

……第n次到O点的时间为

(n=0.1,2,3……)

C处小球欲与振子相碰,它和振子运动的时间应该是相等的;小球做自由落体运动,所以有

2、弹簧振子模型

【例5】如图所示,质量为m的物块A放在木板B上,而B固定在竖直的轻弹簧上。

若使A随B一起沿竖直方向做简谐运动而始终不脱离,则充当A的回复力的是。

当A的速度达到最大时,A对B的压力大小为。

解析:

根据题意,只要在最高点A、B仍能相对静止,则它们就会始终不脱离。

而在最高点,外界对A所提供的最大回复力为mg,即最大加速度amax=g,故A、B不脱离的条件是a≤g,可见,在振动过程中,是A的重力和B对A的支持力的合力充当回复力。

因为A在系统的平衡位置时,速度最大,此时A所受重力与B对它的支持力的合力为零,由牛顿第三定律可知,a对B的压力大小等于其重力mg。

【例6】在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与劲度系数为k的一轻弹簧固定相连.弹簧的另一端与小车左端固定连接,将弹簧压缩x0后用细绳将m栓住,m静止在小车上的A点,如图所示,m与M间的动摩擦因数为μ,O点为弹簧原长位置,将细绳烧断后,m、M开始运动.求:

①当m位于O点左侧还是右侧且跟O点多远时,小车的速度最大?

并简要说明速度为最大的理由.②判断m与M的最终运动状态是静止、匀速运动还是相对往复的运动?

【解析】①在细线烧断时,小球受水平向左的弹力F与水平向右的摩擦力f作用,开始时F必大于f.m相对小车右移过程中,弹簧弹力减小,而小车所受摩擦力却不变,故小车做加速度减小的加速运动.当F=f时车速达到最大值,此时m必在O点左侧。

设此时物体在O点左侧x处,

则kx=μmg。

所以,当x=μmg/k时,小车达最大速度.

②小车向左运动达最大速度的时刻,物体向右运动也达最大速度,这时物体还会继续向右运动,但它的运动速度将减小,即小车和物体都在做振动.由于摩擦力的存在,小车和物体的振动幅度必定不断减小,设两物体最终有一共同速度v,因两物体组成的系统动量守恒,且初始状态的总动量为零,故v=0,即m与M的最终运动状态是静止的

3、利用振动图像分析简谐振动

【例7】一弹簧振子沿x轴振动,振幅为4cm.振子的平衡位置位于x袖上的0点.图甲中的a,b,c,d为四个不同的振动状态:

黑点表示振子的位置,黑点上箭头表示运动的方向.图乙给出的①②③④四条振动图线,

可用于表示振子的振动图象是(AD)

A.若规定状态a时t=0,则图象为①

B.若规定状态b时t=0,则图象为②

C.若规定状态c时t=0,则图象为③

D.若规定状态d时t=0,则图象为④

解析:

若t=0,质点处于a状态,则此时x=+3cm运动方向为正方向,只有图①对;若t=0时质点处于b状态,此时x=+2cm,运动方向为负方向,②图不对;若取处于C状态时t=0,此时x=-2cm,运动方向为负方向,故图③不正确;取状态d为t=0时,图④刚好符合,故A,D正确.

1、某地区地震波中的横波和纵波传播速率分别约为4km/s和9km/s.一种简易地震仪由竖直弹簧振子P和水平弹簧振子H组成(题20图).在一次地震中,震源地地震仪下方,观察到两振子相差5s开始振动,则

A.P先开始振动,震源距地震仪约36km

B.P先开始振动,震源距地震仪约25km

C.H先开始振动,震源距地震仪约36km

D.H先开始振动,震源距地震仪约25km

答案:

A

解析:

本题考查地震波有关的知识,本题为中等难度题目。

由于纵波的传播速度快些,所以纵波先到达地震仪处,所以P先开始振动。

设地震仪距震源为x,则有

解得:

x=36km.

h

a

b

O

2、如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不变。

已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半。

则碰撞后D

A.摆动的周期为

B.摆动的周期为

C.摆球最高点与最低点的高度差为0.3h

D.摆球最高点与最低点的高度差为0.25h

3、一列简谐横波沿x轴负方向传播,图1是t=1s时的波形图,图2是波中某振动质元位移随时间变化的振动图线(两图用同同一时间起点),则图2可能是图1中哪个质元的振动图线?

(A)

x/m

图1

O

y/m

123456

 

图2

O

t/s

y/m

123456

A.x=0处的质元;B.x=1m处的质元;

C.x=2m处的质元;D.x=3m处的质元。

 

4、简谐机械波在给定的媒质中传播时,下列说法中正确的是( D )

A.振幅越大,则波传播的速度越快

B.振幅越大,则波传播的速度越慢

C.在一个周期内,振动质元走过的路程等于一个波长

D.振动的频率越高,则波传播一个波长的距离所用的时间越短

5、公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板。

一段时间内货物在坚直方向的振动可视为简谐运动,周期为T。

取竖直向上为正方向,以某时刻作为计时起点,即

,其振动图象如图所示,则(C)

A.

时,货物对车厢底板的压力最大

B.

时,货物对车厢底板的压力最小

C.

时,货物对车厢底板的压力最大

D.

时,货物对车厢底板的压力最小

6、一砝码和一轻弹簧构成弹簧振子,图1所示的装置可用于研究该弹簧振子的受迫振动。

匀速转动把手时,曲杆给弹簧振子以驱动力,使振子做受迫振动。

把手匀速转动的周期就是驱动力的周期,改变把手匀速转动的速度就可以改变驱动力的周期。

若保持把手不动,给砝码一向下的初速度,砝码便做简谐运动,振动图线如图2所示.当把手以某一速度匀速转动,受迫振动达到稳定时,砝码的振动图线如图3所示.若用T0表示弹簧振子的固有周期,T表示驱动力的周期,Y表示受迫振动达到稳定后砝码振动的振幅,则AC

A.由图线可知T0=4s

B.由图线可知T0=8s

C.当T在4s附近时,Y显著增大;当T比4s小得多或大得多时,Y很小

D.当T在8s附近时,Y显著增大;当T比8s小得多或大得多时,Y很小

7、某同学看到一只鸟落在树枝上的P处,树枝在10s内上下振动了6次,鸟飞走后,他把50g的砝码挂在P处,发现树枝在10s内上下振动了12次.将50g的砝码换成500g砝码后,他发现树枝在15s内上下振动了6次,你估计鸟的质量最接近B

A.50gB.200g

C.500gD.550g

8、一单摆做小角度摆动,其振动图象如图,以下说法正确的是(D)

A.

时刻摆球速度最大,悬线对它的拉力最小

B.

时刻摆球速度为零,悬线对它的拉力最小

C.

时刻摆球速度为零,悬线对它的拉力最大

D.

时刻摆球速度最大,悬线对它的拉力最大

1、单摆:

在细线的一端挂上一个小球,另一端固定在悬点上,如果线的伸缩和质量可以忽略,球的直径比线长短得多,这样的装置叫做单摆.这是一种理想化的模型,一般情况下细线(杆)下接一个小球的装置都可作为单摆.

2、单摆振动可看做简谐运动的条件是:

在同一竖直面内摆动,摆角θ<100.

3、单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。

在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。

4、单摆的周期:

当l、g一定,则周期为定值T=2π

,与小球是否运动无关.与摆球质量m、振幅A都无关。

其中摆长l指悬点到小球重心的距离,重力加速度为单摆所在处的测量值。

要区分摆长和摆线长。

5、小球在光滑圆弧上的往复滚动,和单摆完全等同。

只要摆角足够小,这个振动就是简谐运动。

这时周期公式中的l应该是圆弧半径R和小球半径r的差。

6、秒摆:

周期为2s的单摆.其摆长约为lm.

【例1】如图为一单摆及其振动图象,回答:

(1)单摆的振幅为,频率为,摆长为,一周期内位移x(F回、a、Ep)最大的时刻为.

解析:

由纵坐标的最大位移可直接读取振幅为3crn.横坐标可直接读取完成一个全振动即一个完整的正弦曲线所占据的时间.轴长度就是周期T=2s,进而算出频率f=1/T=0.5Hz,算出摆长l=gT2/4π2=1m·

从图中看出纵坐标有最大值的时刻为0.5s末和1.5s末.

(2)若摆球从E指向G为正方向,α为最大摆角,则图象中O、A、B、C点分别对应单摆中的点.一周期内加速度为正且减小,并与速度同方向的时间范围是。

势能增加且速度为正的时间范围是.

解析:

图象中O点位移为零,O到A的过程位移为正.且增大.A处最大,历时1/4周期,显然摆球是从平衡位置E起振并向G方向运动的,所以O对应E,A对应G.A到B的过程分析方法相同,因而O、A、B、C对应E、G、E、F点.

摆动中EF间加速度为正,且靠近平衡位置过程中加速度逐渐减小,所以是从F向E的运动过程,在图象中为C到D的过程,时间范围是1.5—2.0s间

摆球远离平衡位置势能增加,即从E向两侧摆动,而速度为正,显然是从E向G的过程.在图象中为从O到A,时间范围是0—0.5s间.

(3)单摆摆球多次通过同一位置时,下述物理量变化的是()

A.位移;B.速度;C.加速度;D.动量;E.动能;F.摆线张力

解析:

过同一位置,位移、回复力和加速度不变;由机械能守恒知,动能不变,速率也不变,摆线张力mgcosα+mv2/L也不变;由运动分析,相邻两次过同一点,速度方向改变,从而动量方向也改变,故选B、D.

如果有兴趣的话,可以分析一下,当回复力由小变大时,上述哪些物理量的数值是变小的?

(1)、

(2)、(3)看出,解决此类问题的关键是把图象和实际的振动—一对应起来.

(4)当在悬点正下方O/处有一光滑水平细钉可挡住摆线,且

=¼

.则单摆周期为s.比较钉挡绳前后瞬间摆线的张力.

解析:

放钉后改变了摆长,因此单摆周期应分成钉左侧的半个周期,前已求出摆线长为lm,所以T左=π

=1s:

钉右侧的半个周期T右=π

=0.5s,所以T=T左十T右=1.5s.

由受力分析,张力T=mg+mv2/L,因为钉挡绳前后瞬间摆球速度不变,球重力不变,挡后摆线长为挡前的1/4.所以挡后绳张力变大.

(5)若单摆摆球在最大位移处摆线断了,此后球做什么运动?

若在摆球过平衡位置时摆线断了,摆球又做什么运动?

解析:

问题的关键要分析在线断的时间,摆球所处的运动状态和受力情况.在最大位移处线断,此时球速度为零,只受重力作用,所以球做自由落体运动.在平衡位置线断,此时球有最大水平速度,又只受重力,所以做平抛运动.

【例2】有一个单摆,其摆长l=1.02m,摆球的质量m=0.1kg,从和竖直方向成摆角θ=40的位置无初速度开始运动(如图所示),问:

(1)已知振动的次数n=30次,用了时间t=60.8s,重力加速度g多大?

(2)摆球的最大回复力多大?

(3)摆球经过最低点时速度多大?

(4)此时悬线拉力为多大?

(5)如果将这个摆改为秒摆,摆长应怎样改变?

为什么?

(取sin40=0.0698,cos40=0.9976,π=3.14)

【解析】

(1)θ<50,单摆做简谐运动,其周期T=t/n=60.8/30s=2·027s,根据T=2

得,g=4×π×1.02/2.0272=9.791m/s2。

(2)最大回复力为F1=mgsin4o=0.1×9.791×0.0698N=0.068N

(3)单摆振动过程中,重力势能与动能互相转化,不考虑阻力,机械能守恒,其总机械能E等于摆球在最高处的重力势能E,或在最低处的速度v=

=0.219m/s。

(4)由T-mg=mv2/L得

悬线拉力为T=mg十mv2/L=0.l×10十0.l×0.2l92/1.02=0.52N

(5)秒摆的周期T=2s,设其摆长为L0,根据T=2

得,g不变,

则T∝

即T∶T0=

故L0=T02L/T2=22×l.02/2.0272=0.993m,

其摆长要缩短ΔL=L—L0=l.02m—0.993m=0.027m

二、振动的能量

1、对于给定的振动系统,振动的动能由振动的速度决定,振动的势能由振动的位移决定,振动的能量就是振动系统在某个状态下的动能和势能的总和.

2、振动系统的机械能大小由振幅大小决定,同一系统振幅越大,机械能就越大.若无能量损失,简谐运动过程中机械能守恒,做等幅振动.

3、阻尼振动与无阻尼振动

(1)振幅逐渐减小的振动叫做阻尼振动.

(2)振幅不变的振动为等幅振动,也叫做无阻尼振动.

注意:

等幅振动、阻尼振动是从振幅是否变化的角度来区分的,等幅振动不一定不受阻力作用.

4.受迫振动

(1)振动系统在周期性驱动力作用下的振动叫做受迫振动.

(2)受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.

5.共振

(1)当驱动力的频率等于振动系统的固有频率时,物体的振幅最大的现象叫做共振.

(2)条件:

驱动力的频率等于振动系统的固有频率.

(3)共振曲线.如图所示.

【例3】行驶着的火车车轮,每接触到两根钢轨相接处的缝隙时,就受到一次撞击使车厢在支着它的弹簧上面振动起来.已知车厢的固有同期是0.58s,每根钢轨的长是12.6m,当车厢上、下振动得最厉害时,火车的车速等于m/s.

解析:

该题应用共振的条件来求解.火车行驶时,每当通过铁轨的接缝处就会受到一次冲击力,该力即为策动力.当策动周期T策和弹簧与车厢的国有周期相等时,即发生共振,即T策=T固=0.58s………①T策=t=L/v……②

将①代入②解得v=L/0.58=21.7m/s答案:

21.7m/s

规律方法1、单摆的等效问题

①等效摆长:

如图所示,当小球垂直纸面方向运动时,摆长为CO.

②等效重力加速度:

当单摆在某装置内向上运动加速度为a时,

T=2π

;当向上减速时T=2π

,影响回复力的等效加速度可以这样求,摆球在平衡位置静止时,摆线的张力T与摆球质量的比值.

【例4】如图所示,在光滑导轨上有一个滚轮A,质量为2m,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 思想汇报心得体会

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1