《问题解决的基本步骤》教学设计01.docx

上传人:b****5 文档编号:6429728 上传时间:2023-01-06 格式:DOCX 页数:4 大小:20.01KB
下载 相关 举报
《问题解决的基本步骤》教学设计01.docx_第1页
第1页 / 共4页
《问题解决的基本步骤》教学设计01.docx_第2页
第2页 / 共4页
《问题解决的基本步骤》教学设计01.docx_第3页
第3页 / 共4页
《问题解决的基本步骤》教学设计01.docx_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

《问题解决的基本步骤》教学设计01.docx

《《问题解决的基本步骤》教学设计01.docx》由会员分享,可在线阅读,更多相关《《问题解决的基本步骤》教学设计01.docx(4页珍藏版)》请在冰豆网上搜索。

《问题解决的基本步骤》教学设计01.docx

《问题解决的基本步骤》教学设计01

《问题解决的基本步骤》教学设计

【教学目标】

知识目标:

了解问题解决的四个步骤

能力目标:

会初步按问题解决的四个基本步骤,对应用题进行审题,分析数量关系,选择数学模型,设定未知量,列方程,解方程,并进行检验、回顾与反思.。

情感目标:

把实际问题转化为数学问题,建立方程的模型,体验一元一次方程与实际的密切联系,生活中的数学.

【教学重点、难点】

重点:

按问题解决的四个基本步骤,列方程解应用题.

难点:

例1的理解和回顾,例2的分析数量关系.

【教学过程】

一新课的引入

举一个出门旅行的实例来引入问题解决的基本步骤:

要出门旅行前要做些什么?

(老师问),学生讨论后,教师概括:

理解问题是指我们要明确出发地和目的地、两地之间的交通工具、时间、费用等等.在理解问题的基础上,通过对各种已知信息的分析,各种预想方案的比较,确定实施方案,也就是制定计划。

接下来当然就是执行计划-----旅游.在结束旅行回来后回顾过程,获取有益的经验,也就是回顾.但这四个步骤常常是一个反复的过程.所以解决问题的四个基本步骤:

理解问题,制定计划,执行计划,回顾.

二新课

请同学们一起朗读并理解P132上四个步骤的具体要求.

1.例一(见课本并展示课件)

理解问题

师:

我们可以按问题解决的基本步骤来分析思考问题,使我们的思维有条不紊科学地进行。

然后仔细阅读例一的资费标准调整表后,考虑我们要解决的问题涉及哪几个关键的量?

这些量之间有怎样的数量关系?

生:

涉及通话时间、收费标准和话费三个量,他们的关系是:

通话时间×收费标准=话费.

师:

在21:

00拨打一个电话,调整前的话费为3.40元,你能判定这个长话属于哪个时间段?

生:

3.40×0.04÷6=510秒〈1时,说明属于20:

00~22:

00这个时间段内.

师:

刚才这位同学从时间角度比较得出,还有其他判定方法吗?

生:

可从话费角度考虑.如果在21:

00~22:

00通话时间为1时,相应的话费就为0.04÷(6×3600)=24元 〉3.4元,说明这个通话时间不到1小时.

制定计划

师:

现在知道了这个话费是在21:

00~22:

00时间段,我们也应该想到对于同一个电话,无论调整前后收费标准怎样变化,但总有:

调整前通话时间=调整后通话时间.根据前面的分析,可用列方程求解.具体步骤如下:

设所求的话费为X→用X的代数式表示调整后的通话时间→列方程→解方程→检验

(强调解题格式与书写规范)

执行计划   设所求的话费X,根据题意,得

             3.40÷   =X÷   

解这个方程,得X=2.55(元)

答:

这个电话在调整后的话费为2.55元.

回顾    

师:

做完了问题应该有个回顾,有利于我们加深对问题的理解,并能举一反三,提高效率.

(1)检验结果,求解无误,结果符合实际.

(2)获取了有益的经验,说明求解过程中,“510秒小于1时”的检验是必需的,保证21:

00所打的电话再在20:

00~22:

00的时间段内,这样还启发我们对问题条件做适当的修改后继续研究,展示下列各变题:

变题1.调整前的话费改为30元,那么“执行计划”应做何调整?

(教师简单分析,让学生上讲台板演)

简析:

从21:

00~22:

00通话时间1时,相应话费为24元,那还有6元的话费应该在22:

00以后打的,打了(30-24)÷(0.03÷6)=1200(秒),则总通话时间为3600+1200=4800(秒),所列方程是

1.6X÷0.03=4800,解得X=24.

刚才讲的都是已知调整前话费,求调整后的话费,再进一步可得节省的费用.反思一下,若已知节省的费用,能求出其余的量吗?

变题2.一个从19:

50分开始打的长话,在调整后话费节省了1.8元,那么这个电话在何时通话结束?

调整后的话费是多少?

(学生分组讨论)

教师帮助学生一起归纳得出:

在18:

00~20:

00之间,话费降幅为(0.06÷6)-(0.03÷6)=0.005.从19:

50到20:

00这10分内可节省话费0.005×10×60=3(元)但1.8小于3,即通话不超过10分,只有

2.8×(6÷0.03)=360秒=6分.

若所设的未知数不变,则6X÷0.03=360,解得X=1.8.即调整后的话费是1.8元,电话在19:

56通话结束.

变题3.若将变题2节省的话费改为5元,则在调整后的话费又是多少?

0.005×10×60=3(元)

(5-3)÷(0.01÷6)=2100(秒)

所以共耗时10分+20分=30分,则所列方程应是6X÷0.03=30×60,解得X=9(元)

师:

对一个问题应仔细分析题意,适当地改变已知条件,就可得到新的问题,同学们不妨自行编题,下面我们再来看一题例.

3.例二(展示课件,详见课本)

师:

第一步先“理解问题”(由学生回答):

已知的量有参加两个社的总人数,两个社都参加的人数以及参加每个社的人数之间的数量关系,要求的是参加“书画社”的人数.

 第二步“制定计划”,不妨借助于几何图形,直观描述各个量之间的关系.由课本中的图,知左边圆的面积表示参加书画社的人数,右边圆的面积表示参加文学社的人数,那么公共部分的面积表示什么量?

只参加书画和只参加文学社的人数应该由哪块面积表示?

(由一个学生上黑板画图表示),指出思路;

思路1 参加书画人数+参加文学人数-两个社都参加的人数=总人数;

思路2 只参加书画人数+只参加文学人数+两个社都参加人数=总人数

第三步“执行计划” 先设定未知数X,表示有关的未知量,然后请同学分别回答.

第四步“回顾”,让学生检验,无论哪种思路,解得的结果都符合题意,体现一题多解的思想方法.

4.课堂练习

课本P134的课内练习.(学生合作完成,教师巡回检查并指出:

本题是等积变形问题,让学生了解对于具体问题,当计算结果需取近似值时,不能都用四舍五入法,有时要根据实际情况选用“进一法”,或“去尾法”.本题考虑锻造时的损耗,为保证加工结果准确,必须留有加工余量,因此采用进一法.)

5.小结

本节课给出了解决问题的基本步骤.首先要审题,分析各个量之间的关系,确定哪些量已知,哪些量未知.再找到等量关系,制定计划,执行计划中应注意书写要规范,并养成做完题进行回顾,反思的好习惯.

三 布置作业

(1)课本P134的作业题A组都做,B组有能力的同学完成,C组课后探究思考.

(2)作业本①中此节内容.

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 判决书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1