九年级数学 二次函数知识点总结.docx

上传人:b****6 文档编号:6171198 上传时间:2023-01-04 格式:DOCX 页数:7 大小:253.96KB
下载 相关 举报
九年级数学 二次函数知识点总结.docx_第1页
第1页 / 共7页
九年级数学 二次函数知识点总结.docx_第2页
第2页 / 共7页
九年级数学 二次函数知识点总结.docx_第3页
第3页 / 共7页
九年级数学 二次函数知识点总结.docx_第4页
第4页 / 共7页
九年级数学 二次函数知识点总结.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

九年级数学 二次函数知识点总结.docx

《九年级数学 二次函数知识点总结.docx》由会员分享,可在线阅读,更多相关《九年级数学 二次函数知识点总结.docx(7页珍藏版)》请在冰豆网上搜索。

九年级数学 二次函数知识点总结.docx

九年级数学二次函数知识点总结

中数学二次函数知识点总结

 I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:

y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:

y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:

y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]

  注:

在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax₁,x₂=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为:

P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与x轴没有交点。

X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

  当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=ax^2+bx+c(a≠0)的图象:

当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  

(1)图象与y轴一定相交,交点坐标为(0,c);

  

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的两根.这两点间的距离AB=|x₂-x₁|

  当△=0.图象与x轴只有一个交点;

  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

  5.抛物线y=ax^2+bx+c的最值:

如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a≠0).

  

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:

y=a(x-h)^2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:

y=a(x-x₁)(x-x₂)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。

因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

 一、二次函数的最值:

  1.如果自变量的取值是全体实数,那么二次函数在图象顶点处取到最大值(或最小值)。

  这时有两种方法求最值:

一种是利用顶点坐标公式,一种是利用配方计算。

  二、二次函数与一元二次方程、二次三项式的关系

  三、二次函数的实际应用

  在公路、桥梁、隧道、城市建设等很多方面都有抛物线型;生产和生活中,有很多“利润最大”、“用料最少”、“开支最节约”、“线路最短”、“面积最大”等问题,它们都有可能用到二次函数关系,用到二次函数的最值。

  那么解决这类问题的一般步骤是:

  第一步:

设自变量;

  第二步:

建立函数解析式;

  第三步:

确定自变量取值范围;

  第四步:

根据顶点坐标公式或配方法求出最值(在自变量的取值范围内)。

  常见考法

  

(1)考查一些带约束条件的二次函数最值;

  

(2)结合二次函数考查一些创新问题。

  二次函数顶点式、交点市、两根式

  一般地,自变量x和因变量y之间存在如下关系:

  

(1)一般式:

y=ax2+bx+c(a,b,c为常数,a≠0),则称y为x的二次函数。

顶点坐标(-b/2a,(4ac-b^2)/4a)

  

(2)顶点式:

y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).

  (3)交点式(与x轴):

y=a(x-x1)(x-x2)

  (4)两根式:

y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.

  说明:

  

(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点.

  

(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).

  误区提醒

  

(1)忽略自变量的取值范围,所求最值不符合实际意义;

  

(2)二次函数的坐标系建立的不恰当,给解题带来了困难。

· 初中数学几何图形典型例题

题目

  【典型例题】(2010四川南充)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).

  

(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?

  

(2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?

答案

  

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1