第9章 整式乘法与因式分解 中考真题演练解析版.docx
《第9章 整式乘法与因式分解 中考真题演练解析版.docx》由会员分享,可在线阅读,更多相关《第9章 整式乘法与因式分解 中考真题演练解析版.docx(21页珍藏版)》请在冰豆网上搜索。
第9章整式乘法与因式分解中考真题演练解析版
苏科新版七年级(下)近3年中考题单元试卷
第9章整式乘法与因式分解
一、选择题(共12小题)
1.(2013•益阳)下列运算正确的是( )
A.2a3÷a=6B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2
2.(2013•杭州)下列计算正确的是( )
A.m3+m2=m5B.m3•m2=m6C.(1﹣m)(1+m)=m2﹣1D.
3.(2013•昆明)下列运算正确的是( )
A.x6+x2=x3B.
C.(x+2y)2=x2+2xy+4y2D.
4.(2013•枣庄)图
(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图
(2)那样拼成一个正方形,则中间空的部分的面积是( )
A.abB.(a+b)2C.(a﹣b)2D.a2﹣b2
5.(2013•杭州)若a+b=3,a﹣b=7,则ab=( )
A.﹣10B.﹣40C.10D.40
6.(2015•杭州)下列各式的变形中,正确的是( )
A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.
﹣x=
C.x2﹣4x+3=(x﹣2)2+1D.x÷(x2+x)=
+1
7.(2015•永州)下列运算正确的是( )
A.a2•a3=a6B.(﹣a+b)(a+b)=b2﹣a2
C.(a3)4=a7D.a3+a5=a8
8.(2014•辽阳)下列运算正确的是( )
A.a2•a3=a6B.(a2)3=a5
C.2a2+3a2=5a6D.(a+2b)(a﹣2b)=a2﹣4b2
9.(2015•泰安)下列计算正确的是( )
A.a4+a4=a8B.(a3)4=a7
C.12a6b4÷3a2b﹣2=4a4b2D.(﹣a3b)2=a6b2
10.(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )
A.a2+4B.2a2+4aC.3a2﹣4a﹣4D.4a2﹣a﹣2
11.(2014•临沂)请你计算:
(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+xn)的结果是( )
A.1﹣xn+1B.1+xn+1C.1﹣xnD.1+xn
12.(2013•常州)有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为( )
A.a+bB.2a+bC.3a+bD.a+2b
二、填空题(共13小题)
13.(2013•永州)定义
为二阶行列式.规定它的运算法则为
=ad﹣bc.那么当x=1时,二阶行列式
的值为 .
14.(2015•珠海)填空:
x2+10x+ =(x+ )2.
15.(2015•莱芜)已知m+n=3,m﹣n=2,则m2﹣n2= .
16.(2015•金华)已知a+b=3,a﹣b=5,则代数式a2﹣b2的值是 .
17.(2015•衡阳)已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为 .
18.(2013•枣庄)若a2﹣b2=
,a﹣b=
,则a+b的值为 .
19.(2014•梅州)已知a+b=4,a﹣b=3,则a2﹣b2= .
20.(2014•镇江)化简:
(x+1)(x﹣1)+1= .
21.(2013•泰州)若m=2n+1,则m2﹣4mn+4n2的值是 .
22.(2014•宁波)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是 (用a、b的代数式表示).
23.(2013•珠海)已知a、b满足a+b=3,ab=2,则a2+b2= .
24.(2013•晋江市)若a+b=5,ab=6,则a﹣b= .
25.(2013•德阳)若
,则
= .
三、解答题(共5小题)
26.(2013•无锡)计算:
(1)
﹣(﹣2)2+(﹣0.1)0;
(2)(x+1)2﹣(x+2)(x﹣2).
27.(2013•赤峰)
(1)计算:
sin60°﹣|1﹣
|+
﹣1
(2)化简:
(a+3)2﹣(a﹣3)2.
28.(2015•内江)
(1)填空:
(a﹣b)(a+b)= ;
(a﹣b)(a2+ab+b2)= ;
(a﹣b)(a3+a2b+ab2+b3)= .
(2)猜想:
(a﹣b)(an﹣1+an﹣2b+…+abn﹣2+bn﹣1)= (其中n为正整数,且n≥2).
(3)利用
(2)猜想的结论计算:
29﹣28+27﹣…+23﹣22+2.
29.(2014•宜昌)化简:
(a+b)(a﹣b)+2b2.
30.(2013•义乌市)如图1所示,从边长为a的正方形纸片中减去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形,
(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b的代数式表示S1和S2;
(2)请写出上述过程所揭示的乘法公式.
参考答案与试题解析
一、选择题(共12小题)
1.(2013•益阳)下列运算正确的是( )
A.2a3÷a=6B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2
【考点】平方差公式;幂的乘方与积的乘方;完全平方公式;整式的除法.
【分析】根据单项式的除法法则,以及幂的乘方,平方差公式以及完全平方公式即可作出判断.
【解答】解:
A、2a3÷a=2a2,故选项错误;
B、(ab2)2=a2b4,故选项错误;
C、正确;
D、(a+b)2=a2+2ab+b2,故选项错误.
故选C.
【点评】本题考查了平方差公式和完全平方公式的运用,理解公式结构是关键,需要熟练掌握并灵活运用.
2.(2013•杭州)下列计算正确的是( )
A.m3+m2=m5B.m3•m2=m6C.(1﹣m)(1+m)=m2﹣1D.
【考点】平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.
【分析】根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.
【解答】解:
A、不是同类项,不能合并,故选项错误;
B、m3•m2=m5,故选项错误;
C、(1﹣m)(1+m)=1﹣m2,选项错误;
D、正确.
故选D.
【点评】本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.
3.(2013•昆明)下列运算正确的是( )
A.x6+x2=x3B.
C.(x+2y)2=x2+2xy+4y2D.
【考点】完全平方公式;立方根;合并同类项;二次根式的加减法.
【分析】A、本选项不能合并,错误;
B、利用立方根的定义化简得到结果,即可做出判断;
C、利用完全平方公式展开得到结果,即可做出判断;
D、利用二次根式的化简公式化简,合并得到结果,即可做出判断.
【解答】解:
A、本选项不能合并,错误;
B、
=﹣2,本选项错误;
C、(x+2y)2=x2+4xy+4y2,本选项错误;
D、
﹣
=3
﹣2
=
,本选项正确.
故选D
【点评】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.
4.(2013•枣庄)图
(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图
(2)那样拼成一个正方形,则中间空的部分的面积是( )
A.abB.(a+b)2C.(a﹣b)2D.a2﹣b2
【考点】完全平方公式的几何背景.
【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.
【解答】解:
中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,
则面积是(a﹣b)2.
故选:
C.
【点评】本题考查了列代数式,正确表示出小正方形的边长是关键.
5.(2013•杭州)若a+b=3,a﹣b=7,则ab=( )
A.﹣10B.﹣40C.10D.40
【考点】完全平方公式.
【专题】计算题.
【分析】联立已知两方程求出a与b的值,即可求出ab的值.
【解答】解:
联立得:
,
解得:
a=5,b=﹣2,
则ab=﹣10.
故选A.
【点评】此题考查了解二元一次方程组,求出a与b的值是解本题的关键.
6.(2015•杭州)下列各式的变形中,正确的是( )
A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.
﹣x=
C.x2﹣4x+3=(x﹣2)2+1D.x÷(x2+x)=
+1
【考点】平方差公式;整式的除法;因式分解-十字相乘法等;分式的加减法.
【分析】根据平方差公式和分式的加减以及整式的除法计算即可.
【解答】解:
A、(﹣x﹣y)(﹣x+y)=x2﹣y2,正确;
B、
,错误;
C、x2﹣4x+3=(x﹣2)2﹣1,错误;
D、x÷(x2+x)=
,错误;
故选A.
【点评】此题考查平方差公式和分式的加减以及整式的除法,关键是根据法则计算.
7.(2015•永州)下列运算正确的是( )
A.a2•a3=a6B.(﹣a+b)(a+b)=b2﹣a2
C.(a3)4=a7D.a3+a5=a8
【考点】平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.
【分析】A:
根据同底数幂的乘法法则判断即可.
B:
平方差公式:
(a+b)(a﹣b)=a2﹣b2,据此判断即可.
C:
根据幂的乘方的计算方法判断即可.
D:
根据合并同类项的方法判断即可.
【解答】解:
∵a2•a3=a5,
∴选项A不正确;
∵(﹣a+b)(a+b)=b2﹣a2,
∴选项B正确;
∵(a3)4=a12,
∴选项C不正确;
∵a3+a5≠a8
∴选项D不正确.
故选:
B.
【点评】
(1)此题主要考查了平方差公式,要熟练掌握,应用平方差公式计算时,应注意以下几个问题:
①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的a和b可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.
(2)此题还考查了同底数幂的乘法法则:
同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:
①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.
(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:
①(am)n=amn(m,n是正整数);②(ab)n=anbn(n是正整数).
(4)此题还考查了合并同类项的方法,要熟练掌握.
8.(2014•辽阳)下列运算正确的是( )
A.a2•a3=a6B.(a2)3=a5
C.2a2+3a2=5a6D.(a+2b)(a﹣2b)=a2﹣4b2
【考点】平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.
【分析】根据同底数幂的乘法,可判断A,根据幂的乘方,可判断B,根据合并同类项,可判断C,根据平方差公式,可判断D.
【解答】解:
A、底数不变指数相加,故A错误;
B、底数不变指数相乘,故B错误;
C、系数相加字母部分不变,故C错误;
D、两数和乘以这两个数的差等于这两个数的平方差,故D正确;
故选:
D.
【点评】本题考查了平方差,利用了平方差公式,同底数幂的乘法,幂的乘方.
9.(2015•泰安)下列计算正确的是( )
A.a4+a4=a8B.(a3)4=a7
C.12a6b4÷3a2b﹣2=4a4b2D.(﹣a3b)2=a6b2
【考点】整式的除法;合并同类项;幂的乘方与积的乘方.
【专题】计算题.
【分析】原式各项计算得到结果,即可做出判断.
【解答】解:
A、原式=2a4,错误;
B、原式=a12,错误;
C、原式=4a4b6,错误;
D、原式=a6b2,正确.
故选D.
【点评】此题考查了整式的除法,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.
10.(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )
A.a2+4B.2a2+4aC.3a2﹣4a﹣4D.4a2﹣a﹣2
【考点】平方差公式的几何背景.
【专题】几何图形问题.
【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.
【解答】解:
(2a)2﹣(a+2)2
=4a2﹣a2﹣4a﹣4
=3a2﹣4a﹣4,
故选:
C.
【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.
11.(2014•临沂)请你计算:
(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+xn)的结果是( )
A.1﹣xn+1B.1+xn+1C.1﹣xnD.1+xn
【考点】平方差公式;多项式乘多项式.
【专题】规律型.
【分析】已知各项利用多项式乘以多项式法则计算,归纳总结得到一般性规律,即可得到结果.
【解答】解:
(1﹣x)(1+x)=1﹣x2,
(1﹣x)(1+x+x2)=1+x+x2﹣x﹣x2﹣x3=1﹣x3,
…,
依此类推(1﹣x)(1+x+x2+…+xn)=1﹣xn+1,
故选:
A
【点评】此题考查了平方差公式,多项式乘多项式,找出规律是解本题的关键.
12.(2013•常州)有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为( )
A.a+bB.2a+bC.3a+bD.a+2b
【考点】完全平方公式的几何背景.
【专题】压轴题.
【分析】根据3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式即可得出答案.
【解答】解;3张边长为a的正方形纸片的面积是3a2,
4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,
5张边长为b的正方形纸片的面积是5b2,
∵a2+4ab+4b2=(a+2b)2,
∴拼成的正方形的边长最长可以为(a+2b),
故选:
D.
【点评】此题考查了完全平方公式的几何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,用到的知识点是完全平方公式.
二、填空题(共13小题)
13.(2013•永州)定义
为二阶行列式.规定它的运算法则为
=ad﹣bc.那么当x=1时,二阶行列式
的值为 0 .
【考点】完全平方公式.
【专题】新定义.
【分析】根据题中的新定义将所求式子化为普通运算,计算即可得到结果.
【解答】解:
根据题意得:
当x=1时,原式=(x﹣1)2=0.
故答案为:
0
【点评】此题考查了完全平方公式,弄清题中的新定义是解本题的关键.
14.(2015•珠海)填空:
x2+10x+ 25 =(x+ 5 )2.
【考点】完全平方式.
【分析】完全平方公式:
(a±b)2=a2±2ab+b2,从公式上可知.
【解答】解:
∵10x=2×5x,
∴x2+10x+52=(x+5)2.
故答案是:
25;5.
【点评】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.要求熟悉完全平方公式,并利用其特点解题.
15.(2015•莱芜)已知m+n=3,m﹣n=2,则m2﹣n2= 6 .
【考点】平方差公式.
【分析】根据平方差公式,即可解答.
【解答】解:
m2﹣n2
=(m+n)(m﹣n)
=3×2
=6.
故答案为:
6.
【点评】本题考查了平方差公式,解决本题的关键是熟记平方差公式.
16.(2015•金华)已知a+b=3,a﹣b=5,则代数式a2﹣b2的值是 15 .
【考点】平方差公式.
【专题】计算题.
【分析】原式利用平方差公式化简,将已知等式代入计算即可求出值.
【解答】解:
∵a+b=3,a﹣b=5,
∴原式=(a+b)(a﹣b)=15,
故答案为:
15
【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
17.(2015•衡阳)已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为 ﹣3 .
【考点】平方差公式.
【专题】计算题.
【分析】原式利用平方差公式化简,将已知等式代入计算即可求出值.
【解答】解:
∵a+b=3,a﹣b=﹣1,
∴原式=(a+b)(a﹣b)=﹣3,
故答案为:
﹣3.
【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
18.(2013•枣庄)若a2﹣b2=
,a﹣b=
,则a+b的值为
.
【考点】平方差公式.
【专题】计算题.
【分析】已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.
【解答】解:
∵a2﹣b2=(a+b)(a﹣b)=
,a﹣b=
,
∴a+b=
.
故答案为:
.
【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
19.(2014•梅州)已知a+b=4,a﹣b=3,则a2﹣b2= 12 .
【考点】平方差公式.
【专题】计算题.
【分析】根据a2﹣b2=(a+b)(a﹣b),然后代入求解.
【解答】解:
a2﹣b2=(a+b)(a﹣b)=4×3=12.
故答案是:
12.
【点评】本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.
20.(2014•镇江)化简:
(x+1)(x﹣1)+1= x2 .
【考点】平方差公式.
【分析】运用平方差公式求解即可.
【解答】解:
(x+1)(x﹣1)+1
=x2﹣1+1
=x2.
故答案为:
x2.
【点评】本题主要考查了平方差公式,熟记公式是解题的关键.
21.(2013•泰州)若m=2n+1,则m2﹣4mn+4n2的值是 1 .
【考点】完全平方公式.
【专题】计算题.
【分析】所求式子利用完全平方公式变形,将已知等式变形后代入计算即可求出值.
【解答】解:
∵m=2n+1,即m﹣2n=1,
∴原式=(m﹣2n)2=1.
故答案为:
1
【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.
22.(2014•宁波)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是 ab (用a、b的代数式表示).
【考点】平方差公式的几何背景.
【专题】操作型.
【分析】利用大正方形的面积减去4个小正方形的面积即可求解.
【解答】解:
设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,
解得,
②的大正方形中未被小正方形覆盖部分的面积=(
)2﹣4×(
)2=ab.
故答案为:
ab.
【点评】本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.
23.(2013•珠海)已知a、b满足a+b=3,ab=2,则a2+b2= 5 .
【考点】完全平方公式.
【专题】计算题.
【分析】将a+b=3两边平方,利用完全平方公式化简,将ab的值代入计算,即可求出所求式子的值.
【解答】解:
将a+b=3两边平方得:
(a+b)2=a2+2ab+b2=9,
把ab=2代入得:
a2+4+b2=9,
则a2+b2=5.
故答案为:
5.
【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
24.(2013•晋江市)若a+b=5,ab=6,则a﹣b= ±1 .
【考点】完全平方公式.
【分析】首先根据完全平方公式将(a﹣b)2用(a+b)与ab的代数式表示,然后把a+b,ab的值整体代入求值.
【解答】解:
(a﹣b)2=(a+b)2﹣4ab=52﹣4×6=1,
则a﹣b=±1.
故答案是:
±1.
【点评】本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.
25.(2013•德阳)若
,则
= 6 .
【考点】完全平方公式;非负数的性质:
偶次方;非负数的性质:
算术平方根.
【专题】计算题;压轴题;整体思想.
【分析】根据非负数的性质先求出a2+
、b的值,再代入计算即可.
【解答】解:
∵
,
∴
+(b+1)2=0,
∴a2﹣3a+1=0,b+1=0,
∴a+
=3,
∴(a+
)2=32,
∴a2+
=7;
b=﹣1.
∴
=7﹣1=6.
故答案为:
6.
【点评】本题考查了非负数的性质,完全平方公式,整体思想,解题的关键是整体求出a2+
的值.
三、解答题(共5小题)
26.(2013•无锡)计算:
(1)
﹣(﹣2)2+(﹣0.1)0;
(2)(x+1)2﹣(x+2)(x﹣2).
【考点】完全平方公式;实数的运算;平方差公式;零指数幂.
【分析】
(1)原式第一项利用平方根的定义化简,第二项表示两个﹣2的乘积,最后一项利用零指数幂法则计算即可得到结果;
(2)原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果.
【解答】解:
(1)原式=3﹣4+1=0;
(2)原式=x2+2x+1﹣x2+4=2x+5.
【点评】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.
27.(2013•赤峰)
(1)计算:
sin60°﹣|1﹣
|+
﹣1
(2)化简:
(a+3)2﹣(a﹣3)2.
【考点】完全平方公式;实数的运算;负整数指数幂;特殊角的三角函数值.
【分析】
(1)根据特殊角的三角函数值,绝对值,负整数指数幂分别求出每一部分的值,再代入求出即可;
(2)先根据完全平方公式展开,再合并同类项即可.
【解答】解:
(1)原式=
﹣(
﹣1)+2
=
﹣
+1+2
=﹣
+3;
(2)原式=a2+6a+9﹣(a2﹣6a+9)
=a2+6a+9﹣a2+6a﹣9
=12a.
【点评】本题考查了特殊角的三角函数值,绝对值,负整数指数幂,完全平方公式的应用,主要考查学生的计算能力.
28.(2015•内江)
(1)填空:
(a﹣b)(a+b)= a2﹣b2 ;
(a﹣b)(a2+ab+b2)=