本科毕业设计学校食堂服务质量评价及就餐分布规律.docx

上传人:b****0 文档编号:495745 上传时间:2022-10-10 格式:DOCX 页数:25 大小:263.41KB
下载 相关 举报
本科毕业设计学校食堂服务质量评价及就餐分布规律.docx_第1页
第1页 / 共25页
本科毕业设计学校食堂服务质量评价及就餐分布规律.docx_第2页
第2页 / 共25页
本科毕业设计学校食堂服务质量评价及就餐分布规律.docx_第3页
第3页 / 共25页
本科毕业设计学校食堂服务质量评价及就餐分布规律.docx_第4页
第4页 / 共25页
本科毕业设计学校食堂服务质量评价及就餐分布规律.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

本科毕业设计学校食堂服务质量评价及就餐分布规律.docx

《本科毕业设计学校食堂服务质量评价及就餐分布规律.docx》由会员分享,可在线阅读,更多相关《本科毕业设计学校食堂服务质量评价及就餐分布规律.docx(25页珍藏版)》请在冰豆网上搜索。

本科毕业设计学校食堂服务质量评价及就餐分布规律.docx

本科毕业设计学校食堂服务质量评价及就餐分布规律

学校食堂服务质量评价及就餐分布规律

摘要:

本文选取海南大学二食堂、五食堂、六食堂三个食堂,对他们的服务质量进行评价,并尽可能准确地对学校师生在这三个食堂的分布规律进行预测。

对于第一个问题,我们采用层次分析法和熵权法,确定就餐环境、饭菜性价比、工作人员的服务态度、饭菜口味和排队时间五个因素作为准则层,最优食堂为目标层,三个食堂为方案层,然后建立各个层次的比较判断矩阵,运用MATLAB软件计算,并做一致性检验确定权重,得到五个因素对目标层的权重为:

,说明饭菜口味占的比重最大,其次是饭菜性价比,然后依次是就餐环境、排队时间及工作人员的服务态度。

然后结合熵权法,避免一定的主观随意性,最后得到海明距离并排序(距离越小的越接近理想的方案),结果是:

食堂

二食堂

五食堂

六食堂

L

0.7967

0.6745

0.5288

排序

3

2

1

说明在三个食堂中,六食堂服务质量最好,五食堂次之,二食堂最差。

对于第二问,我们建立逐步回归分析模型,以选择某食堂学生的比例被解释变量,饭菜口味可以作为解释变量。

另外,我们将教室、宿舍与食堂的距离单独考虑,然后结合这两者,近似预测师生在这三个食堂的就餐分布规律。

相关数据是根据实际问卷调查的统计结果和大致估算。

最后得出大致结果是六食堂的午餐和晚餐较其他两个食堂来说多,特别在周末和节假日。

周末去五食堂和二食堂吃早餐的人数会显著减少。

文章的最后部分,我们查阅了大量的相关文献并结合一二问的结果,给学校后勤管理部门写了一份报告,提出了自己的建议。

我们的特色在于结合了主客观因素,准确地对三个食堂的服务质量进行了评价。

并通过设计问卷,根据统计的数据结果和回归分析模型估计预测就餐的分布规律。

关键词:

层次分析法、熵权法、回归分析、服务质量、分布规律

一、问题重述

海南大学除了旅游学院的食堂外,有六个学生食堂,大约每天供应25000人(学生,教职员工)就餐。

学生分布在1—19栋(不考虑旅游学院),集中在1—5教上课。

长期以来,食堂的供餐量与就餐量之间存在供求矛盾。

例如,其中某食堂反应:

在饭菜供应方面有时有巨大的浪费,饭菜做了很多,可是因为来食堂吃饭的人少,不得不倒掉。

然而,一些学生却说,中午第四节课结束后,因为餐厅里人多,排队长,等轮到自己时,好吃的菜已经被打完了,这时新菜还没上来,又不愿意再等,只好随便吃。

教师就餐有时也会遇到问题,比如,期末考试期间,老师来食堂吃午饭,因为是在周末,饭菜准备的不足,师傅们讲他们没接到通知,所以按往常的状态准备饭菜。

食堂管理者和广大师生都非常关注这种供求关系的不平衡。

但目前还没有找到行之有效、快捷的就餐量化预测方法,能够比较准确地预测不同时段,不同日期的就餐人数,以减少材料的浪费,提高食堂的服务质量和广大师生的满意度。

请你分析并回答:

(1)运用数学建模的方法评价三个食堂的服务质量,建立师生在食堂就餐服务质量的满意度模型;

(2)近似地预测师生在三个食堂就餐的分布规律,建立模型,定量地刻划就餐者在早餐,午餐,晚餐以及周一到周五,周末和节假日的就餐人数。

并给出相应的误差分析等;

(3)基于

(1)

(2)问的结论,给学校后勤管理部门写一份报告,并给出自己的建议。

二、问题分析

本题要求对六个食堂中的三个食堂进行评价,其中一二三四食堂连在一起,五六食堂距离很近。

我们选取较有代表性的二食堂,五食堂和六食堂。

对于第一问,我们通过网上查阅相关资料,结合这三个食堂的具体情况,从就餐环境、饭菜的性价比,工作人员的服务态度、饭菜合不合口及排队时间这五个标准出发,运用层次分析法,两两比较列出成对比较矩阵,求出相应的最大特征值和权向量,通过一致性检验,然后综合评价三个食堂的服务质量,我们在这里并没有加入教学楼和宿舍楼与食堂的距离,因为我们认为这对与食堂的服务质量没有影响,而对(师生)选择就餐食堂有影响。

而第二问我们先对五个因素进行回归分析,再单独考虑教室、宿舍与食堂的距离,对各食堂周一到周五,双休和节假日的早午餐的就餐人数进行估计预测。

最后,在一二问的基础上,并查阅大量文献给学校的后勤管理部门写了一份报告,提出了我们的建议。

三、问题的假设

1、我们设定的五个指标(同层元素)之间相互独立,且具有可比性。

2、假设食堂学生就餐与其中各影响因素呈线性关系。

3、假设旅游学院的学生都在旅游学院食堂吃饭,同时其他学院的学生又全部不在旅游学院吃饭。

4、假设五食堂各楼层服务质量一样,六食堂也是。

即不考虑各楼层的区别。

5、假设150份的调查结果具有很好的代表性,每个人的评价标准近似。

6、假设周一到周五学生全部去上课

四、符号说明

表示准则层A对目标层O的成对比较矩阵;

表示方案层B对准则层A的成对比较矩阵;

表示准则层的各个因素;

表示准则

对目标层O影响之比;

表示每个矩阵的最大特征值;

表示一致性指标;

表示各随机一致性指标;

表示各随机一致性比率;

表示未归一化的权向量;

表示归一化的权向量;

表示准则层A对目标层O所建立矩阵的阶数;

表示去各食堂就餐的比例;

表示五个准则的平均分;

初步估计到三个食堂学生就餐人数;

食堂所在的区域;

周末学生在学校就餐的比例;

:

教室所在区域;

五、模型的建立与假设

5.1三个食堂的服务质量评价(问题一)

首先运用层次分析法分析,层次分析法是一种定性与定量相结合的系统分析法,根据总目标,以系统化的观点,把问题分解成若干因素,并按上层对下层的支配关系构成递阶的层次结构模型,通过两两对比的方法确定决策方案的重要性,从而获得较满意的决策。

然后,我们将层次分析法与熵权法结合起来进行分析。

熵权法是一种客观赋权方法,它是根据各指标的变异程度,利用信息熵计算出各指标的熵权,再通过熵权对各指标的原来的权重进行修正,从而得出较为客观的指标权重。

5.1.1构造层次结构图:

根据上下层之间的关系,绘出的层次结构图如下:

编号

1

2

3

4

5

指标

就餐环境

饭菜性价比

服务态度

饭菜口味

排队时间

5.1.2构造成对比较矩阵

我们采用了Santy等人提出的1—9尺度,用两两因素相互对比,则

的取值范围是1,2,…,9及其互反数1,1/2,…,1/9,再结合150份问卷中相关问题,确定准则层的成对比较矩阵:

,其中

即为正反互逆矩阵,当且仅当

时,正互反

矩阵

称为一致判断矩阵。

 

标度

含义

1

同样重要

3

稍微重要

5

明显重要

7

强烈重要

9

极端重要

2,4,6,8

的重要性在上述两个相邻等级之间

1,1/2,…,1/9

的重要性之比为上面

的倒数

准则层

对目标层的判断矩阵为:

方案层

层的判断矩阵为:

5.1.3计算权向量并做一致性检验

对每个成对的矩阵,利用MATLAB算出最大特征根

及对应的特征向量

利用一致性指标

,随机性指标

和一致性比例

作一致性检验,

越大表示不一致程度越高,越接近0表示一致程度高,等于0的时候表示有完全的一致性。

以矩阵

为例,用MATLAB计算出的结果(程序见附录)有:

最大特征值:

未归一化的相应的特征向量:

归一化的相应的特征向量:

的一致性指标:

(1)

上式说明

的一致程度高,为了确定其不一致程度的容许范围,根据Saaty引入的随机一致性指标计算一致性比率。

随机一致性指标

的数值有:

矩阵阶数

1

2

3

4

5

6

7

8

9

RI

0.00

0.00

0.58

0.90

1.12

1.24

1.32

1.41

1.49

在表中,n=5,时,

的一致性比率:

(2)

结果表明矩阵

有令人满意的一致性,各分量作为相应的各个因素的权重值合理,可以用

作为其权向量。

判断矩阵

最大特征值

规划后权向量

5.2093

(0.1346,0.2896,0.0355,0.4745,0.0658)

0.0523

0.0467

3.0037

(0.1095,0.3090,0.5816)

0.0019

0.0032

3.0536

(0.5278,0.3325,0.1396)

0.0268

0.0462

3.0092

(0.2970,0.1634,0.5396)

0.0046

0.0079

3.0092

(0.1634,0.2970,0.5396)

0.0046

0.0079

3.0

(0.4000,0.2000,0.4000)

0.0000

0.0000

从上表可以看出,各个判断矩阵的一致性比率均小于0.1,表明各矩阵的不一致程度在容许的范围为内,其中

矩阵的

其它的

然后我们进行组合一致性检验,定义第

层的一致性指标为

,随机一致性指标为

,定义

(3)

(4)

则组合一致性比率为:

(5)

时,第

层通过组合一致性检验,通过MATLAB计算可得到:

,故通过一致性检验。

5.1.4层次总排序及其一致性检验

一般地,在层次分析法中,若共有

层,则第

层对第一层的组合权向量满足:

(6)

由上分析可知准则层对目标层的权向量为:

方案层对准则层的权向量表示为:

(7)

位列向量构成矩阵:

(8)

则方案层对目标层的组和权向量为:

(9)

以二食堂为例,它的权重为:

则方案层对目标层的组合权向量为

并且由上结果可算出方案层对目标层的组合一致性比率,由公式:

(10)

可得:

组合一致性检验通过,

可作为评价的依据。

因为六食堂所占的比重相对另两个食堂的比重很大,而五食堂比二食堂的比重略大,故在这三个食堂中,大家对六食堂最满意,五食堂次之,二食堂最不满意。

结果与预期的一致。

同时依据正互反矩阵A得出的权向量

可以知道:

师生选择食堂考虑的因素当中,饭菜口味所占的比重最大,其次是饭菜性价比,所占比重最小的是排队时间,就餐环境和服务态度分别是占第三位和第四位。

5.1.5熵权法修正权重

熵权法是一种客观赋值方法,它是根据各指标的变异程度,利用信息上计算出各指标的熵权,再通过熵权对各指标的权重进行修正,从而得到较为客观的指标权重。

具体步骤如下:

(1)确定评价体系,建立评价指标体系,构造指标水平矩阵

(重新定义的n,i和j)

我们先设有m个目标,n个评价标准,(本题m为三,n为五),采用专家评分法对第i个目标的第j个属性的评估值为

,初始矩阵为:

(2)对初始矩阵进行标准化处理:

根据下式

(11)

可得矩阵

:

(3)计算第j个指标的熵值

(12)

(4)然后计算第j个指标的熵权

(13)

(5)再确定指标的综合权数

;有层次分析法我们已经得到各个指标的权重

,结合指标的熵权

,就可以得到指标j的综合权数:

(14)

(6)引用Zadeh的定义计算空间距离,我们采用

的海明距离,即:

(15)

(7)最后按照L由小到大对评价的对象进行排序,距离越小的越接近理想的方案。

模型求解:

我们有三个食堂作为评价对象,就餐环境、饭菜性价比、工作人员的服务态度、饭菜口味

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 兵器核科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1