管道进口段流动特性分析解析.docx

上传人:b****4 文档编号:4835756 上传时间:2022-12-10 格式:DOCX 页数:23 大小:317.50KB
下载 相关 举报
管道进口段流动特性分析解析.docx_第1页
第1页 / 共23页
管道进口段流动特性分析解析.docx_第2页
第2页 / 共23页
管道进口段流动特性分析解析.docx_第3页
第3页 / 共23页
管道进口段流动特性分析解析.docx_第4页
第4页 / 共23页
管道进口段流动特性分析解析.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

管道进口段流动特性分析解析.docx

《管道进口段流动特性分析解析.docx》由会员分享,可在线阅读,更多相关《管道进口段流动特性分析解析.docx(23页珍藏版)》请在冰豆网上搜索。

管道进口段流动特性分析解析.docx

管道进口段流动特性分析解析

管道进口段流动特性分析

摘要:

本次的课题研究主要是了解管道流动的概念及应用,来分析流场湍动特性。

首先通过实验测得风机不同频率下的管道进口段速度。

熟悉气体管道流动的一般汁算,采用商业软件对气体输送系统进行模拟。

本课题利用Gambit建立儿何模型,将模型导入Fluent进行模拟计算,Tecplot软件进行后处理,计算结果用可视化图形表示出来,进而加以分析和总结。

结果说明,在管道中距离风机出口越远,速度分布更加趋向于抛物线形状,接近层流充分开展的流速分布,中心处速度增加,两边速度趋于对称分布。

随着风机频率的增加,管道截面平均速度增加,在管道进口4m内,轴向和径向的截面速度变化变大。

距出口4m后,速度分布逐渐于抛物线形状,接近层流充分开展的流速分布,中心处速度增加,两边速度趋于对称分布,山于壁面边界层的影响,壁面附近速度降低,边界层随轴向长度厚度不断增加。

同时,轴向速度变化率减低,速度在不同截面分布形状更加相近。

关键词:

管道流动;数值模拟;Fluent软件

Pipeflowcharacteristicsofentrance

Abstract:

Thesubjectofstudyistounderstandtheconceptandapplicationofpipelineflow,toanalyzetheturbulentflowfieldcharacteristicsoFirst,theexperimentmeasuredatdifferentfrequenciesinthePipelinefanentrancespeed・Familiarwiththegeneralflowofgaspipelinecalculation,usingcommercialsoftwaretosimulatethegastransportsystem・ThesubjectofgeometryusingGambitsetupthemodelsintothesimulationofFluent,Tecplotsoftwarepost-processing,visualizationoftheresultsthatcomeoutwith,andthenanalyzedandsummarized・Theresultsshowthattheexportpipelinefartherfromthefan,thevelocitydistributiontendstobemoreparabolicshape,closetothefullydevelopedlaminarflowvelocitydistribution,thecenterincreasedthespeed,thespeedtendstosymmetricaldistributiononbothsides.Withthefanincreaseoffrequency,channelcross-sectionaverageincreaseinpipelineimports4m,theaxialandradialvelocitychangesincross-sectionlarger.4mawayfromtheexit,thevelocitydistributiongraduallyintheparabolicshape,closetothefullydevelopedlaminarflowvelocitydistribution,thecenterincreasedthespeed,thespeedtendstosymmetricaldistributiononbothsides,duetotheimpactofthewallboundarylayer,nearthewallvelocitydecreases,theboundarylayerwithaxiallengthofthethicknessincrease・Atthesametime,reducetherateofchangeofaxialvelocity,velocitydistributionatdifferentcrosssectionshapemoresimilar.

Keywords:

Pipeflow;numericalsimulation;Fluentsoftware

摘要

Abstract

1前言

引言

国内外的研究现状

课题根本内容和拟解决的主要问题

湍流模型

研究方法

研究意义

2理论方法

控制方程

质量守恒方程

动量守恒方程

湍流的控制方程

2.22模型

采用方法

2.3.1GAMBIT软件介绍

232GAMBIT操作步骤

2.3.3FLUENT软件介绍

2.3.4FLUENT操作步骤

3模拟方案介绍

3.1了解研究区域并生成几何结构

划分网格

指定边界类型

采用FLUENT进行求解

4计算结果与分析

风机工作频率为30HZ时簸分析

风机工作频率为40HZ时槪分析

风机工作频率为50HZ时流场分析

风机工作频率为50HZ,待机时流场分析

充分开展管道流速分析

5结论

1刖吕

引言

管道流动的分析和研究对人类日常生活,工业生产,农业作物都起着极其重要的作用。

在许多领域,更多地掌握管道流动的技术,都是很重要的。

近年来,随着科学技术的日益兴旺,管道流动技术开展速度迅速,并且很够在工业,农业领域上更好的发挥它的作用。

流体管道是流体传输、传动和控制工程中用以输送流体介质、传递流体动力和信息的不可或缺的元件⑴。

在实际管道系统中,由于组成系统的某一元件工作状态的变更〔如阀的开度变化、泵的脉动等〕或受外界干扰〔如负载的变化〕,将不可防止地在管道内产生流量和压力的冲击或脉动,形成非恒定流动,引起管内流动的动态过程。

流体管道的动态特性对系统的稳定流动的动态过程流体管道的动态特性对系统的稳定性和可靠性,以及系统中其它元件的正常工作有着很大影响国。

流体管道动态特性数值模拟具有研究周期短、经费投入少,不受模型尺寸、外界扰动、测量精度限制等优点,其作用相当于在计算机上进行复杂流体试验【创。

数值模拟包含以下儿个步骤:

①建立反映问题〔丄程问题、物理问题等〕本质的数学模型。

具体说就是要建立反映问题各量之间的微分方程及相应的定解条件。

牛顿流体流动的数学模型就是纳维一斯托克斯方程及其相应的定解条件;②寻求高效率、高准确度的计算方法。

计算方法不仅包括数学模型的离散化及求解方法,还包括计算网格的建立、边界条件的处理;③编制程序和进行计算;④通过图像形象地显示计算结果。

数值模拟所得出的结果可对实际流体管道系统的设讣、优化等进行指导,具有重要的工程实际意义。

国内外研究现状

生产实际中所使用的管道内壁都有一定的粗糙度,管壁粗糙程度因制造工艺所采用的处理方法以及材料的不同而不同,粗糙度和流动形态之间的相互作用情况相当复杂,有时粗糙度还会改变流动形态。

当流体速度小于临界速度时,流体变现为层流。

当流体速度大于临界速度时,流体变现为紊流⑸。

人们研究发现粘性流体经过固体壁面时,在固体壁面与流体主流之间必定有一个流速变化的区域,在高速流中这个区域是个薄层,称为边界层。

流体从管道流入后,山于受到管壁的影响,靠近壁面的流动受到阻滞,流速降低,形成边界层⑹。

通过管道的流量是一定的,而边界层的厚度逐渐增大,以致未受管壁影响的中心局部的流速必将加快。

这种不断改变速度分布的流动一直开展到边界层在管辖处相交,成为充分开展的流动为止⑺。

边界层相交以前的管段称为管道进口段〔或称起始段〕•进口段的流动时速度分布不断变化的非均匀流动,进口段以后的流动那么是各个截面速度分布相同的均匀流动。

随着管道流动研究的日益增进,人们对于边界层的研究也是越来越深入。

自从1904年普朗特提出边界层理论以来,就使得流体力学显得日益重要,其应用也越来越广泛同。

传统的边界层理论只研究速度边界层,主要研究绕物体流动时流体的速度分布和绕流阻力。

20世纪70年代以后,温度边界层理论的到开展和成熟,并在热传、传质、石油、化工等众多领域得到广泛的应用⑼。

热边界层理论的得出为它的工程应用提供了有力的理论依据。

利用热边界层减阻是电伴热管道输送高粘性液体的主要应用研究成果2】。

这种方法有如下特点:

1〕伴热均匀,能充分利用热边界层,到达最大减阻效果⑵能利用自动控温,在不同季节以最正确伴热温度输送不同种类的高粘液体;3〕可随意升温和停温,M至作业完成后管道不需要放空,因此可称之为随温输送;4〕热效率高,能耗低,平安经济,可实现自动化。

对于恒定管流,热边界层同速度边界层有着显著的差异。

通过实验发现,速度边界层开展起始段很短,而热边界层开展段〔入口段〕的长度要大得多。

因此,在考虑热边界层时,可近似认为速度边界层已充分开展到达稳定,这样在研究数学模型时,就只需要考虑能量方程即可,从而为管道热边界层理论的研究带来了方便山】。

山于电伴热具有极大的优越性,因此LI前各国都在广泛的研究应用这项新技术。

随着应用的深人,在设讣、施工过程中碰到了不少理论性的问题⑶。

口前对于管道的稳态传热的研究较多,而管道热边界层理论的研究,伴热管道温度和热流量〔功率〕确实定,伴热过程中管道摩擦水头损失的讣算及泵的选型设il•等就是LI前还没有或需亟待解决的问题"21。

课题根本内容和拟解决的主要问题

实验测得不同风机频率下的速度,熟悉气体管道流动的一般计算,采用商业软件对气体输送系统进行模拟。

采用Gambit建模,Fluent软件进行模拟,Tecplot软件进行后处理。

得出整个管道内的流动特性。

湍流模型

对于流场的讣算,比拟常用的湍流模型有:

零方程模型,单方程模型和双方程模型等。

其中零方程模型不包含湍动量的微分输运方程,适用于湍动较弱的流场。

单方程模型(包括湍流脉动动能的输运方程),当对流输运或扩散输运比拟重要时,单方程模型优于零方程模型,但单方程模型中如何确定大的含能涡旋的尺寸仍较困难。

双方程模型(包括湍流脉动动能及其耗散率的输运方程),能较好解决大的含能涡旋的尺寸问题,对湍动较强的流场使用Ry模型能得到很好的汁算结果。

对于气体流动,其流速较高,湍动也较强,因此适合采用£模型。

研究方法

气体在管道中的流动是湍流问题。

求解气体在管道中流动的问题,首先要山流体力学、热力学、传质传热学等根本原理出发,建立质量、动量、能量、组分湍流特性等守恒方程组,如连续方程、扩散方程、湍能方程等,此即建立根本方程的含义。

这些方程所构成的联立非线性偏微分方程组,不能用经典的分析法,只能用数值方法求解。

数值模拟方法具有经济、高效的特点。

此次课程是利用GAMBIT和FLUENT软件对气体在管道中流动进行模拟运算,包括如下步骤:

(1)建立反映工程问题或物理问题本质的数学模型。

具体地说就是要建立反应问题各个量之间关系的微分方程及相应的定解条件,这是数值模拟的出发点。

这里采用Fluent软件中的k-s模型。

(2)进行计算。

这局部工作包括计算网格划分,初始条件和边界条件的输入,控制参数的设定等。

这是整个工作中花时间最多的局部。

需要花时间去完成。

这里可用Gambit和Fluent软件去进行模拟。

(3)显示计算结果。

计算结果一般通过图表等方式显示,这对检查和判断分

析质量和结果有重要意义。

研究意义

通过对管道内速度的数值模拟,了解管道内的速度分布情况,从而分析管道进口段流动特性的分析,使管道流动技术开展速度更迅速,并且很够更好在工业,农业领域上更好的发挥它的作用做前期根底研究。

2理论方法

2.1控制方程

质量守恒方程

任何流动问题都必须满足质量守恒定律。

该定律可表达为:

单位时间内流体微元体中质量的增加,等于同一时间间隔内流入该微元体的净质量。

按照这一定律,可以得到质量守恒方程(massconservationequation):

(2-1)

dp[a(p»)[d(pv)[g(p>v)_Qdtdxdydz

是密度,/是时间,八w是速度矢量在x、y、z方向的分量。

2.1・2动量守恒方程

动量守恒定律也是任何流动系统都必须满足的根本定律。

该定律可表达为:

微元中流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和。

照这一定律,

可导岀x、y、z三个方向的动量'孑恒方程(momentumconservation

equation):

 

(2-2b)

(2~2c)

也+div(恥)一生+竺+竺+竺+F、

dtdydxdydz

0+div(o叩)=-生+竺+竺+込+只

dtdz,oxdydz,

式中,p是流体微元体上的压力;叽、6召、等是因分子粘性作用而产生的作用在微元体外表上的粘性应力r的分量;耳、F、、巴是微元体的体力,假设体力只用重力,且z轴竖直向上,那么代二0,兀二0,Fz=pgo

上面是对任何类型的流体。

对于牛顿流体,粘性应力r与流体的变形率成比

例,有:

2.2k_w模型

流体按湍流对待,选择标准k^£湍流模型,模型的所有系数用默认值。

在模型中湍动耗散率的£被定义为:

湍动粘度给可表示成〃和£的函数,即:

一般都可以用一个通用形式来表示:

使用散度符号,上式记为:

r=//+^-

而本文用到的k~£湍流模型中,皆k,扩散系数6,源项

S=Gk+ps

o

2.3采用方法

2.3.1GAMBIT软件介绍⑴显示区

该区域位于整个窗口的中央,是6大区域中最大的一块,用于显示儿何模型及生成网格图。

如果需要,该显示区可以拆分为4个小区,这样便于显示和操作。

这里显示出的是一透平机械的网格图,没有对显示区进行拆分。

〔2〕菜单区

GAMBIT的菜单区位于显示区的上方,共有File、Edit、Solver和Hclp4个菜单。

其中,File菜单提供的操作包括翻开文件、保存文件、从文件中导入模型、导出当前模型、退出等。

Edit菜单提供的操作包括修改系统设置、取消上一步操作、重复刚取消的操作等。

Solver菜单用来选择求解器的类型,如FLUENT5、、FIDAP、POLYFLOW.NEKTON、ANSYS等。

Help显示帮助信息。

〔3〕操作区

操作区位于界面右侧,山3个层次的命令组及当前命令使用的对话框构成。

其中,第一层次的命令组为Operation,包含4个:

级命令组,依次为Geometry〔儿何操作〕、Mesh〔网格划分〕、Zone〔区域指定〕^Tools〔Z具〕。

这4个命令组分别有一个按钮与之对应。

使用GAMBIT的大局部命令都通过这4个按钮发出。

它们的功能分别是:

©Geometry命令组提供了建立点、线、面及组的多种方法,以及相关的颜色控制、信息统计和数据删除等功能;

2Mesh命令组包括对边界、线、面、体和组的网格划分、网格联结、信息修改等功能;

3Zone命令组用于指定和命名模型及模型的边界;

©Tools命令组提供了网格生成时的一些辅助工具。

刚一启动Gambit时,只显示最高层次命令组,即Operation命令组。

单击命令组中的某个命令按钮时,会出现相应的二级命令组。

单击二级命令组中的按钮,会出现三级命令组。

〔4〕操作提示区

操作提示区位于显示区下方,由两个小窗口构成,标题分别为Transcript和Descriptiono其中,Transcript窗口用于显示操作信息,包括完成过程中的一些重要信息和操作失败的原因。

Description窗口给出当鼠标指针移到某个按钮上的提示信息。

〔5〕命令提示行

命令提示行位于界面的最下方,窗口的标题是Commando用户可在该区域输入所需要的命令。

⑹控制区

控制区位于界面右下角,标题为GlobalControl通过单击该区域内的按钮,可对显示区内坐标系标志、颜色、模型的各个显示属性等进行控制。

控制区中第一行上的5个小图标按钮,用于控制显示区的4个小区。

第1个小图标按钮控制左上区,假设图标按钮中的深色局部是红色,那么说明显示区的左上区是活动的,可以进行操作,例如改变显示角度等;如果是灰色的,那么左上区不能进行操作。

第2到第4个图标的功能与之类似。

最后一个图标的作用是将显示区中所有的小区变为活动的。

第2行中的各个图标按钮的作用是控制显示区域大小和视角等。

5个按钮的功能依次是:

缩放图形显示范围以使图形整体全部显示在当前窗口中,设置旋转图形时用的旋转轴心,使用上一次的菜单及窗口配置更新当前显示,改为光源的位置和撤消上一步的操作。

笫3行中的各个图形按钮的作用是控制显示属性。

5个按钮的功能分别是:

为模型显示确定方位、指定模型是否可见等属性、指定模型显示的外观〔如线框、渲染或消隐等〕、指定颜色模型〔是否将模型颜色与儿何属性相关联〕及放大局部网格模型〔用于对网格进行仔细考察〕。

在GAMBIT中,按下鼠标左键并拖动,可以实现模型的旋转;按下中键并拖动,可以移动模型;按下右键并向上拖动可以缩小模型,向下拖动那么放大模型,向左或向右拖动那么旋转模型;同时Ctrl键和鼠标左键,在屏幕上拖出一个矩形框,那么将模型在矩形框中的局部放大到整个显示区;同时按Shift键和鼠标左键,表示选中模型或者模型的儿何元素,该功能只在特定的操作过程中有效。

2.3.2GAMBIT操作步骤

对于一个给定的CFD问题,可利用GAMBIT,按如下3个步骤生成网格文件:

(1)构造儿何模型。

这个环节既可利用GAMBIT提供的功能完成,也可在其他CAD软件中生成儿何模型后,导入GAMBIT之中。

在生成儿何模型后,可将该模型以默认的dbs格式或其他CAD格式(如ACIS格式)保存到磁盘上。

(2)划分网格。

这个环节需要输入一系列参数,如单元类型、网格类型及有关选项等。

这是生成网格过程中最关键的环节。

对于简单的CFD问题,这个过程只是操作儿次鼠标的问题,而对于复杂的问题,特别是三维问题,这一过程需要精心筹划、细心实施。

这个环节结束后,一个与求解域完全对应的网格模型便制作出来,用户可从多个视角观察这个网格模型。

(3)指定边界类型和区域类型。

因CFD求解器定义了多种不同的边界,如壁面边界、进口边界、对称边界等,因此在Gambit中需要先指定所使用的求解器名称(如Fluent5/6),然后,指定网格模型中各边界的类型。

如果模型中包含有多个区域,如同时有流体区域和固体区域,或者是在动静联合计算中两个流体区域的运动不同,那么必须指定区域的类型和边界,将各区域分开来。

当上述3个过程全部结束后,可将带有边界信息的网格模型存取(文件扩展名为*.dbs)或输出为专门的网格文件化msh),供CFD求解器读取。

2.3.3FLUENT软件介绍

Fluent软件是流体力学中通用性较强的一种商品软件,它不但可以为工程设计效劳,亦可用于科学研究。

它的软件设计基于“CFD计算机软件群〞的概念,针对每一种流动的物理问题的特点,釆用适合于它的数值解法在讣算速度,稳定性和精度等各方面到达最正确,再将不同领域的计算软件组合起来,成为CFD软件群,从而高效率的解决各个领域内复杂流动的讣算问题。

这些不同软件可以计算流场,传热和化学反响,各个软件之间可以方便地进行数值交换。

各种软件釆用统一前后端处理工具,为Fluent的通用化建立了根底。

关于Fluent软件的详细操作在后面将被具体介绍。

2.3.4FLUENT操作步骤

FLUENT是一个求解器,在使用FLUENT进行求解之前,必须借助GAMBIT、TGRID或其他CAD软件生成网格模型,釆用GAMBIT进行网格生成。

(1)制订分析方案

在使用FLUENT前,首先应针对所要求解的物理问题,制订比拟详细的求解方案。

制订求解方案需要考虑的因素包括以下内容:

1:

决定CFD模型目标。

确定要从CFD模型中获得什么样结果,怎样使用这些结果,需要怎样的模型精度。

2:

选择计算模型。

在这里要考虑怎样对物理系统进行抽象概括,计算域包括那些区域,在模型计算域的边界上使用什么样的边界条件,模型按二维还是三维构造,什么样的网格拓朴结构最适合于该问题。

3:

选择物理模型。

考虑该流动是无粘、层流,还是湍流,流动是稳态还是非稳态,热交换重要与否,流动是用可压还是不可压方式来处理,是否多相流动,是否需要应用其他物理模型。

4:

决定求解过程。

在这个环节要确定该问题是否可以利用求解器现有的公式和算法直接求解,是否需要增加其他的参数(如构造新的源项),是否有更好的求解方式可使求解过程更快地收敛,使用多重网格讣算机的内存是否够用,得到收敛解需要多久的时间。

一旦考虑好上述各问题后,就可开始进行CFD建模和求解。

(2)求解步骤

当决定了

(1)中的儿个要素后,便可按以下过程开展流动模拟。

•创立儿何模型和网格模型(在GAMBIT或其他前处理软件中完成)。

•启动FLUENT求解器。

•导入网格模型。

•检查网格模型是否存在问题。

•选择求解器及运行环境。

•决定计算模型,即是否考虑热交换,是否考虑粘性,是否存在多相等。

•设置材料特性。

•设置边界条件。

•设置控制求解的有关参数。

•初始化流场。

•开始求解。

•显示求解结果。

•保存求解结果。

•如果必要,修改网格或计算模型,然后重复上述过程重新进行计算。

3模拟方案介绍

3.1了解研究区域并生成几何结构

本文为气体在直管道内的流动,首先要模拟岀一个管道。

翻开Fluent软件的前处理块Gambit,单击Operation/Geometry/Face/CreateRealRectangular按钮,在弹出的CreateRealRectangularFace对话框中,分别输入两个坐标值,再把Direction中改成+X,+Y,构建管道,如图。

图3・1模拟区域几何模型

3.2划分网格

单击Operation/Mesh/Face/MeshFace按钮,弹岀MeshFaces对话框。

在列表框内选取前面生成面,在IntervalSize〔指定网格间隔〕一栏输入10,单击Apply按钮后,生成面网格,如图。

图而网格图

3.3指定边界类型

具体过程:

(1)指定求解器名称。

在Solver菜单中指定求解器为FLUENT5/6。

(2)指定边界类型。

单击Operation/Zones/SpecifyBoundaryTypes按扭,弹出SpecifyBoundaryTypes对话框。

在对话框中,分别指定:

1选定矩形左边的线条,在Type中选类型为VELOCITY_INLET(速度进口),取名为inlet;

2选定矩形右边的线条,在Type中选类型为OUTFLOW,取名为out:

3选定矩形的上下2条线,在Type中选类型为WALL(固壁),取名为wall。

操作完成后,网格模型外表上仍维持原样,但

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1