三个遗传算法程序精品毕业设计完整版.docx

上传人:b****6 文档编号:4640478 上传时间:2022-12-07 格式:DOCX 页数:22 大小:21.99KB
下载 相关 举报
三个遗传算法程序精品毕业设计完整版.docx_第1页
第1页 / 共22页
三个遗传算法程序精品毕业设计完整版.docx_第2页
第2页 / 共22页
三个遗传算法程序精品毕业设计完整版.docx_第3页
第3页 / 共22页
三个遗传算法程序精品毕业设计完整版.docx_第4页
第4页 / 共22页
三个遗传算法程序精品毕业设计完整版.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

三个遗传算法程序精品毕业设计完整版.docx

《三个遗传算法程序精品毕业设计完整版.docx》由会员分享,可在线阅读,更多相关《三个遗传算法程序精品毕业设计完整版.docx(22页珍藏版)》请在冰豆网上搜索。

三个遗传算法程序精品毕业设计完整版.docx

三个遗传算法程序精品毕业设计完整版

遗传算法程序

(一):

说明:

fga.m为遗传算法的主程序;采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择,均匀交叉,变异操作,而且还引入了倒位操作!

function[BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options)

%[BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation)

%Findsamaximumofafunctionofseveralvariables.

%fmaxgasolvesproblemsoftheform:

%maxF(X)subjectto:

LB<=X<=UB

%BestPop-最优的群体即为最优的染色体群

%Trace-最佳染色体所对应的目标函数值

%FUN-目标函数

%LB-自变量下限

%UB-自变量上限

%eranum-种群的代数,取100--1000(默认200)

%popsize-每一代种群的规模;此可取50--200(默认100)

%pcross-交叉概率,一般取0.5--0.85之间较好(默认0.8)

%pmutation-初始变异概率,一般取0.05-0.2之间较好(默认0.1)

%pInversion-倒位概率,一般取0.05

0.3之间较好(默认0.2)

%options-1*2矩阵,options

(1)=0二进制编码(默认0),option

(1)~=0十进制编

%码,option

(2)设定求解精度(默认1e-4)

%

%------------------------------------------------------------------------

T1=clock;

ifnargin<3,error('FMAXGArequiresatleastthreeinputarguments');end

ifnargin==3,eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[01e-4];end

ifnargin==4,popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[01e-4];end

ifnargin==5,pCross=0.8;pMutation=0.1;pInversion=0.15;options=[01e-4];end

ifnargin==6,pMutation=0.1;pInversion=0.15;options=[01e-4];end

ifnargin==7,pInversion=0.15;options=[01e-4];end

iffind((LB-UB)>0)

error('数据输入错误,请重新输入(LB

');

end

s=sprintf('程序运行需要约%.4f秒钟时间,请稍等......',(eranum*popsize/1000));

disp(s);

globalmnNewPopchildren1children2VarNum

bounds=[LB;UB]';bits=[];VarNum=size(bounds,1);

precision=options

(2);%由求解精度确定二进制编码长度

bits=ceil(log2((bounds(:

2)-bounds(:

1))'./precision));%由设定精度划分区间

[Pop]=InitPopGray(popsize,bits);%初始化种群

[m,n]=size(Pop);

NewPop=zeros(m,n);

children1=zeros(1,n);

children2=zeros(1,n);

pm0=pMutation;

BestPop=zeros(eranum,n);%分配初始解空间BestPop,Trace

Trace=zeros(eranum,length(bits)+1);

i=1;

whilei<=eranum

forj=1:

m

value(j)=feval(FUN(1,:

),(b2f(Pop(j,:

),bounds,bits)));%计算适应度

end

[MaxValue,Index]=max(value);

BestPop(i,:

)=Pop(Index,:

);

Trace(i,1)=MaxValue;

Trace(i,(2:

length(bits)+1))=b2f(BestPop(i,:

),bounds,bits);

[selectpop]=NonlinearRankSelect(FUN,Pop,bounds,bits);%非线性排名选择

[CrossOverPop]=CrossOver(selectpop,pCross,round(unidrnd(eranum-i)/eranum));

%采用多点交叉和均匀交叉,且逐步增大均匀交叉的概率

%round(unidrnd(eranum-i)/eranum)

[MutationPop]=Mutation(CrossOverPop,pMutation,VarNum);%变异

[InversionPop]=Inversion(MutationPop,pInversion);%倒位

Pop=InversionPop;%更新

pMutation=pm0+(i^4)*(pCross/3-pm0)/(eranum^4);

%随着种群向前进化,逐步增大变异率至1/2交叉率

p(i)=pMutation;

i=i+1;

end

t=1:

eranum;

plot(t,Trace(:

1)');

title('函数优化的遗传算法');xlabel('进化世代数(eranum)');ylabel('每一代最优适应度(maxfitness)');

[MaxFval,I]=max(Trace(:

1));

X=Trace(I,(2:

length(bits)+1));

holdon;plot(I,MaxFval,'*');

text(I+5,MaxFval,['FMAX='num2str(MaxFval)]);

str1=sprintf('进化到%d代,自变量为%s时,得本次求解的最优值%f\n对应染色体是:

%s',I,num2str(X),MaxFval,num2str(BestPop(I,:

)));

disp(str1);

%figure

(2);plot(t,p);%绘制变异值增大过程

T2=clock;

elapsed_time=T2-T1;

ifelapsed_time(6)<0

elapsed_time(6)=elapsed_time(6)+60;elapsed_time(5)=elapsed_time(5)-1;

end

ifelapsed_time(5)<0

elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_time(4)-1;

end%像这种程序当然不考虑运行上小时啦

str2=sprintf('程序运行耗时%d小时%d分钟%.4f秒',elapsed_time(4),elapsed_time(5),elapsed_time(6));

disp(str2);

 

%初始化种群

%采用二进制Gray编码,其目的是为了克服二进制编码的Hamming悬崖缺点

function[initpop]=InitPopGray(popsize,bits)

len=sum(bits);

initpop=zeros(popsize,len);%Thewholezeroencodingindividual

fori=2:

popsize-1

pop=round(rand(1,len));

pop=mod(([0pop]+[pop0]),2);

%i=1时,b

(1)=a

(1);i>1时,b(i)=mod(a(i-1)+a(i),2)

%其中原二进制串:

a

(1)a

(2)...a(n),Gray串:

b

(1)b

(2)...b(n)

initpop(i,:

)=pop(1:

end-1);

end

initpop(popsize,:

)=ones(1,len);%Thewholeoneencodingindividual

 

%解码

function[fval]=b2f(bval,bounds,bits)

%fval-表征各变量的十进制数

%bval-表征各变量的二进制编码串

%bounds-各变量的取值范围

%bits-各变量的二进制编码长度

scale=(bounds(:

2)-bounds(:

1))'./(2.^bits-1);%Therangeofthevariables

numV=size(bounds,1);

cs=[0cumsum(bits)];

fori=1:

numV

a=bval((cs(i)+1):

cs(i+1));

fval(i)=sum(2.^(size(a,2)-1:

-1:

0).*a)*scale(i)+bounds(i,1);

end

 

%选择操作

%采用基于轮盘赌法的非线性排名选择

%各个体成员按适应值从大到小分配选择概率:

%P(i)=(q/1-(1-q)^n)*(1-q)^i,其中P(0)>P

(1)>...>P(n),sum(P(i))=1

function[selectpop]=NonlinearRankSelect(FUN,pop,bounds,bits)

globalmn

selectpop=zeros(m,n);

fit=zeros(m,1);

fori=1:

m

fit(i)=feval(FUN(1,:

),(b2f(pop(i,:

),bounds,bits)));%以函数值为适应值做排名依据

end

selectprob=fit/sum(fit);%计算各个体相对适应度(0,1)

q=max(selectprob);%选择最优的概率

x=zeros(m,2);

x(:

1)=[m:

-1:

1]';

[yx(:

2)]=sort(selectprob);

r=q/(1-(1-q)^m);%标准分布基值

newfit(x(:

2))=r*(1-q).^(x(:

1)-1);%生成选择概率

newfit=cumsum(newfit);%计算各选择概率之和

rNums=sort(rand(m,1));

fitIn=1;newIn=1;

whilenewIn<=m

ifrNums(newIn)

selectpop(newIn,:

)=pop(fitIn,:

);

newIn=newIn+1;

else

fitIn=fitIn+1;

end

end

 

%交叉操作

function[NewPop]=CrossOver(OldPop,pCross,opts)

%OldPop为父代种群,pcross为交叉概率

globalmnNewPop

r=rand(1,m);

y1=find(r

y2=find(r>=pCross);

len=length(y1);

iflen>2&mod(len,2)==1%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数

y2(length(y2)+1)=y1(len);

y1(len)=[];

end

iflength(y1)>=2

fori=0:

2:

length(y1)-2

ifopts==0

[NewPop(y1(i+1),:

),NewPop(y1(i+2),:

)]=EqualCrossOver(OldPop(y1(i+1),:

),OldPop(y1(i+2),:

));

else

[NewPop(y1(i+1),:

),NewPop(y1(i+2),:

)]=MultiPointCross(OldPop(y1(i+1),:

),OldPop(y1(i+2),:

));

end

end

end

NewPop(y2,:

)=OldPop(y2,:

);

%采用均匀交叉

function[children1,children2]=EqualCrossOver(parent1,parent2)

globalnchildren1children2

hidecode=round(rand(1,n));%随机生成掩码

crossposition=find(hidecode==1);

holdposition=find(hidecode==0);

children1(crossposition)=parent1(crossposition);%掩码为1,父1为子1提供基因

children1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因

children2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因

children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因

%采用多点交叉,交叉点数由变量数决定

function[Children1,Children2]=MultiPointCross(Parent1,Parent2)

globalnChildren1Children2VarNum

Children1=Parent1;

Children2=Parent2;

Points=sort(unidrnd(n,1,2*VarNum));

fori=1:

VarNum

Children1(Points(2*i-1):

Points(2*i))=Parent2(Points(2*i-1):

Points(2*i));

Children2(Points(2*i-1):

Points(2*i))=Parent1(Points(2*i-1):

Points(2*i));

end

 

%变异操作

function[NewPop]=Mutation(OldPop,pMutation,VarNum)

globalmnNewPop

r=rand(1,m);

position=find(r<=pMutation);

len=length(position);

iflen>=1

fori=1:

len

k=unidrnd(n,1,VarNum);%设置变异点数,一般设置1点

forj=1:

length(k)

ifOldPop(position(i),k(j))==1

OldPop(position(i),k(j))=0;

else

OldPop(position(i),k(j))=1;

end

end

end

end

NewPop=OldPop;

 

%倒位操作

function[NewPop]=Inversion(OldPop,pInversion)

globalmnNewPop

NewPop=OldPop;

r=rand(1,m);

PopIn=find(r<=pInversion);

len=length(PopIn);

iflen>=1

fori=1:

len

d=sort(unidrnd(n,1,2));

ifd

(1)~=1&d

(2)~=n

NewPop(PopIn(i),1:

d

(1)-1)=OldPop(PopIn(i),1:

d

(1)-1);

NewPop(PopIn(i),d

(1):

d

(2))=OldPop(PopIn(i),d

(2):

-1:

d

(1));

NewPop(PopIn(i),d

(2)+1:

n)=OldPop(PopIn(i),d

(2)+1:

n);

end

end

end

遗传算法程序

(二):

functionyouhuafun

D=code;

N=50;%Tunable

maxgen=50;%Tunable

crossrate=0.5;%Tunable

muterate=0.08;%Tunable

generation=1;

num=length(D);

fatherrand=randint(num,N,3);

score=zeros(maxgen,N);

whilegeneration<=maxgen

ind=randperm(N-2)+2;%随机配对交叉

A=fatherrand(:

ind(1:

(N-2)/2));

B=fatherrand(:

ind((N-2)/2+1:

end));

%多点交叉

rnd=rand(num,(N-2)/2);

ind=rndtmp=A(ind);

A(ind)=B(ind);

B(ind)=tmp;

%%两点交叉

%forkk=1:

(N-2)/2

%rndtmp=randint(1,1,num)+1;

%tmp=A(1:

rndtmp,kk);

%A(1:

rndtmp,kk)=B(1:

rndtmp,kk);

%B(1:

rndtmp,kk)=tmp;

%end

fatherrand=[fatherrand(:

1:

2),A,B];

%变异

rnd=rand(num,N);

ind=rnd[m,n]=size(ind);

tmp=randint(m,n,2)+1;

tmp(:

1:

2)=0;

fatherrand=tmp+fatherrand;

fatherrand=mod(fatherrand,3);

%fatherrand(ind)=tmp;

%评价、选择

scoreN=scorefun(fatherrand,D);%求得N个个体的评价函数

score(generation,:

)=scoreN;

[scoreSort,scoreind]=sort(scoreN);

sumscore=cumsum(scoreSort);

sumscore=sumscore./sumscore(end);

childind(1:

2)=scoreind(end-1:

end);

fork=3:

N

tmprnd=rand;

tmpind=tmprnddifind=[0,diff(tmpind)];

if~any(difind)

difind

(1)=1;

end

childind(k)=scoreind(logical(difind));

end

fatherrand=fatherrand(:

childind);

generation=generation+1;

end

%score

maxV=max(score,[],2);

minV=11*300-maxV;

plot(minV,'*');title('各代的目标函数值');

F4=D(:

4);

FF4=F4-fatherrand(:

1);

FF4=max(FF4,1);

D(:

5)=FF4;

saveDDataD

 

functionD=code

loadyouhua.mat

%propertiesF2andF3

F1=A(:

1);

F2=A(:

2);

F3=A(:

3);

if(max(F2)>1450)||(min(F2)<=900)

error('DATApropertyF2exceedit''srange(900,1450]')

end

%getgrouppropertyF1ofdata,accordingtoF2value

F4=zeros(size(F1));

forite=11:

-1:

1

index=find(F2<=900+ite*50);

F4(index)=ite;

end

D=[F1,F2,F3,F4];

functionScoreN=scorefun(fatherrand,D)

F3=D(:

3);

F4=D(:

4);

N=size(fatherrand,2);

FF4=F4*ones(1,N);

FF4rnd=FF4-fatherrand;

FF4rnd=max(FF4rnd,1);

ScoreN=ones(1,N)*300*11;

%这里有待优化

fork=1:

N

FF4k=FF4rnd(:

k);

forite=1:

11

F0index=find(FF4k==ite);

if~isempty(F0index)

tmpMat=F3(F0index);

tmpSco=sum(tmpMat);

ScoreBin(ite)=mod(tmpSco,300);

end

end

Scorek(k)=sum(ScoreBin);

end

ScoreN=ScoreN-Scorek;

 

遗传算法程序(三):

%IAGA

functionbest=ga

clear

MAX_gen=200;%最大迭代步数

best.max_f=0;%当前最大的适应度

STOP_f=14.5;%停止循环的适应度

RANGE=[0255];%初始取值范围[0255]

SPEEDUP_INTER=5;%进入加速迭代的间隔

advance_k=0;%优化的次数

popus=init;%初始化

forgen=1:

MAX_gen

fitness=fit(popus,RANGE);%求适应度

f=fitness.f;

picked=choose(popus,fitness);%选择

popus=intercross(popus,picked);%杂交

popus=aberrance(popus,picked);%变异

ifmax(f)>best.max_f

advance_k=advance_k+1;

x_better(advance_k)=fitness.x;

best.max_f=max(f);

best.popus=popus;

best.x=fitness.x;

end

ifmod(advance_k,SPEEDUP_INTER)==0

RANGE=minmax(x_better);

RANGE

advance=0;

end

end

return;

functionpopus=init%初始化

M=50;%种群个体数目

N=30;%编码长度

popus=round(rand(M,N));

return;

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1