基于CMOS摄像头的智能车路径识别与方向控制毕业论文外文翻译.docx

上传人:b****5 文档编号:4339262 上传时间:2022-11-29 格式:DOCX 页数:10 大小:312.40KB
下载 相关 举报
基于CMOS摄像头的智能车路径识别与方向控制毕业论文外文翻译.docx_第1页
第1页 / 共10页
基于CMOS摄像头的智能车路径识别与方向控制毕业论文外文翻译.docx_第2页
第2页 / 共10页
基于CMOS摄像头的智能车路径识别与方向控制毕业论文外文翻译.docx_第3页
第3页 / 共10页
基于CMOS摄像头的智能车路径识别与方向控制毕业论文外文翻译.docx_第4页
第4页 / 共10页
基于CMOS摄像头的智能车路径识别与方向控制毕业论文外文翻译.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

基于CMOS摄像头的智能车路径识别与方向控制毕业论文外文翻译.docx

《基于CMOS摄像头的智能车路径识别与方向控制毕业论文外文翻译.docx》由会员分享,可在线阅读,更多相关《基于CMOS摄像头的智能车路径识别与方向控制毕业论文外文翻译.docx(10页珍藏版)》请在冰豆网上搜索。

基于CMOS摄像头的智能车路径识别与方向控制毕业论文外文翻译.docx

基于CMOS摄像头的智能车路径识别与方向控制毕业论文外文翻译

英文原文

RouteIdentificationandDirectionControlofSmartCarBasedonCMOSImageSensor

Abstract

Thispaperisdesignedforthe2ndFreescaleCupNationalUndergraduateSmartCarCompetition.WithMC9S12DG128singlechipandsmartcarmodelsuppliedbythecommittee,aCMOSimagesensorisappliedtodetecttheblacktrackonwhiteraceway,whichextendsthedetectionrangeandishelpfultopredicttheforwardpath.Inthispaper,ten-linepixelsinanimageareanalyzedtolocatetheblacktrack,andthePDalgorithmbasedonPIDisemployedtocontrolthedirectionandangleofthesteeringgearrespectively.Byrepeatedtesting,thesmartcarcanrunstablyonthegivenracewayatahighspeed.

Keywords:

routeidentification,directioncontrol,smartcar,MC9S12DG128singlechip,imagesensor,PID

algorithm.

1.Introduction

Therulesof2ndFreescaleCupNationalUndergraduateSmartCarCompetition[1]maybesummarizedasfollows:

theracewayconsistsofalotofwhiteboardsonwhichablacktrackisattached;thesmartcardesignedbyparticipantsrunsalongtheblacktrack;everycarrunstwocirclesinthisgameandthebesttimesoftwocircleswillbethefinalscoreofthiscar,andapparentlytheteamwhosecartakesthebesttimeswillbearthepalm.Accordingtotherules,weshouldensurethatthecarcandistinguishtheblacktrackfromwhiteboardinordertomakethesmartcarrunstably.Therearetwocommonmethodsforrouteidentification:

oneisusinginfrareddiodeasthesensor,andanotherisusingCCD/CMOSimagesensor[2].ThispaperusingCMOSimagesensorasrouteidentificationsensor,thereasonsforwhichareasfollows:

(1)TherangewhichiscoveredbyainfrareddiodesensorismuchsmallerthanaCMOSimagesensorcovers,andonlywecandoistouseseveraldiodesensors,butthemaximumnumberofdiodesensorsusedinthesmartcaris16;

(2)TheworkingvoltageofaCMOSimagesensor(3.3V)islessthanaCCD(12V)or16infrareddiodes.Apparently,usingCMOSimagesensorcannotonlyreducethepowerconsumptionbutalsoextendthevisiblerangeofthesmartcar,andalsoenablethecartopredicttheforwardpath.Thispaperpresentsasystemicsolutionforidentifyingtheracewayandcontrollingthedirectionofsmartcar.

2.CMOScamera

ThereareseveralkindsofCMOSimagesensorsinthemarket.IncomparisonwithotherCMOSimagesensors,theOV6130CMOSimagesensor[3]madebyOmniVisionTechnologiesInc.isthebestchoiceforustodesignaCMOScameraforsmartcarwhetherfromtheviewpointofcostandperformanceorpowerconsumption.TheOV6130isablackandwhitesensorwhichhasa1/4inchCMOSimagingdevicecontainingapproximately101,376pixels(352×288).Thissensorincludesa356×292resolutionimagearray,ananalogsignalprocessor,dual8-bitA/Dconverters,analogvideomultiplexer,digitaldataformatter,videoport,SCCBinterface,registers,anddigitalcontrolsthatincludetimingblock,exposurecontrol,blacklevelcontrol,andwhitebalance.ByassemblingtheexperimentalcircuitwetesttheOV6130outputportstiming(VSYNC,FODD,HERF).Figure1showstheexperimentaltimingdiagrams.

(a)VSYNC-FODDtiming

(b)FODD-HERFtiming

Figure1OV6130experimentaltimingdiagrams

Figure2Structureoftheimagecapturinganddisplayingsystem

ReferringtotheOV6130datasheet,thesetimingdiagramsmatchwellwiththosegivenindatasheet,thusweproducetheOV6130CMOScamerabasedontheexperimentalcircuit.Inordertocheckwhethertheimagescapturedbycamerahavecleardefinitionandsharpcontrastornot,andalsotoconfirmthevisiblerangeofthecamera,wedesignaVBprogramforcapturingtheimagesanddisplayingthemoncomputerscreen.Thisprogrambasesonthreehardwaredevices:

CMOScamera,MCUorsinglechip,PC.Figure2presentshowthesethreedevicesworktogether.

Figure3comparestheoriginalimageofasnakelineofracewaywiththeimagecapturedbyCMOScameraandthendisplayedonscreenbyVBprogram.Itcanbeseenthatthecapturedimagehascleardefinitionandsharpcontrast,andthislaysafoundationforrouteidentificationtobediscussedlater.

(a)Smartcarreadytoscantheraceway

(b)CapturedimagebyCMOScamera

Figure3Comparisonbetweenoriginalimageandcapturedimage

3.Routeidentification

RouteidentificationaimsathelpingthesmartcartorecognizetheforwardtrackbyamethodwhichpicksuptheblacklinefromtheimagecapturedbyCMOScamera,andinfact,thismethodworkswellinthefollowingcases:

straightline,curvinglineandsnakeline.Byrepeatedtesting,wedecidetoanalyze10linesofawholeimagetopredicttheforwardconditionofsmartcar.Figure4illustrateshowweanalyzethe10-linepixelsofanimage.

Figure4Routeidentificationdiagram

Thedetailedalgorithmisintroducedasfollows:

Step1:

Calculatecoordinatesoftheblackpixelforeachlinereadytobeanalyzed.Asisillustratedinfigure4,thelines(L0,L1,…,L8,L9)aretobeanalyzed,andthewhitepoints(P0,P1,…,P8,P9)areblackpixelsforeachline.TheoriginOissuperposedbyP9,whichmeansthereisnoblackpixelinlineL9.AssumedthatP(x)andP(y)indicatex-coordinateandy-coordinateofpointP,respectively,herebothP9(x)andP9(y)equal0.Thekeyofthisstepistofindtheblackpixelofeachline.Here,bytakingthefollowingdatumwhichshowsthegrayvaluesofallpixelsinalineasexample,weintroduce

anewapproach:

19521020721520822823624323823423823523123323023523022219620720420820912916065171519187915117215317315014715914115314715413713915613614191411331384127110141112104

(1)AssumedthatPistheblackpixelofthisline,G(i)denotesapixelandiindicatesit’spositioninthisline,V(i)isthegrayvalueofG(i),jisthepositionofthefirstblackpixelappearinginthelinefromlefttoright.HerebothP(x)andP(y)areinitiatedto0,andjis0fromthestart.

(2)Asforeachpixelinthislinefromlefttoright,comparingitsgrayvaluewiththeblackvalueB,herewesetBas30,G(i)isablackpixelonconditionthatV(i)islessthanB.Inthelineabove,thepixelsunderlinedinbold,whosegrayvaluesare17,15,16,18,arecomponentpointsoftheblacktrack,andthepixelsunderlinedbothinboldanditalic,whosegrayvaluesare9,4,areinvalidorinterferentialpixels.IfV(i)islessthanB,setjasi.ThencompareV(j+1)andV(j+2)withBrespectively,resultsgototwosides:

①IfbothV(j+1)andV(j+2)arelessthanB,checkthegrayvalueforeachpixelfromG(j+3)totheendpixelofthisline.IfthetotalnumberofwhitepixelswhosegrayvaluesaregreaterthanBsurpassesorequalsto3,thensetPasG(j+1).Otherwise,goto(3);②Ifnot,repeatthiswayfromthepointG(j+3)on.

(3)Ifthereisnoblackpixelinthisline,setbothP(x)andP(y)as0.

Step2:

Calculatetheaveragecoordinatesof10blackpixels.AsisshowedinFigure4,Mistheaveragepoint,M(x)andM(y)areexpressedasfollows:

Step3:

AccordingtothepositionofMintheimage,wecandecideinwhichdirection(ahead,left,orright)thesmartcarshouldturn.InFigure4,thesmartcarshouldturnrightobviously.

Step4:

Calculatehowmanyanglesthecarshouldturn.FurtherdescriptionsisillustratedinFigure5,whereαFisthecentralpointoftwofrontwheels,Mistheaveragepointmentionedpreviously(seeFigure4),DandL1indicatethewidthandheightofthevisiblerangeofCMOScamerarespectively,L2isthedistancebetweenvisiblerangeandfrontwheels,L3isahalfoffrontwheel’sdiameter,L2+L3meansthedistancebetweenvisiblerangeandtheaxisoffrontwheels.ReferringtoFigure5,itisveryeasytocalculatetheangleα.

Figure5Calculatingtheangleforturning

4.Directioncontrol

Thecentralunitfordirectioncontrolofsmartcarissteeringgear,itsinputsignalisPWM(Pulse-WidthModulation)pulse,anditoutputscorrespondingangleinradian.ThispaperusesthePWMoutputportofMC9S12DG128singlechip[4]astheinputsignalofsteeringgear.Byinputtingthegivendiscretewidthofpulse,wetesttherelationshipbetweentheinputandtheoutput.Theformulabelowexpressesit:

whereXistangentialvalueoftheoutputangle,Yiswidthoftheinputpulse,y0isthecorrespondingvaluewhentheoutputangelequals0andkisslope.Usingthislinearrelationshipwecanoperatethesmartcarsimplyjustbyinputtingthetargetangel,thusthewidthofpulsewhichistheinputsignalofsteeringgearcanbecomputedeasily,thismethod,however,doesn’tworkwellinthefollowingcases:

curvinglineandsnaketrack.ThereforeweapplythePID[5](Proportional,Integral,andDifferential)controllerwhichisverypopularinfieldsofautomationandcontroltechnology.ThekerneltheoryofPIDistodoproportional,integralanddifferentialoperationsontheinputdifferencerespectively,thenjointhethreeresultsasthefinaloutputvalue.Inpractice,itisveryflexibleforustouseaccordingtofeaturesanddemandsoftheobjecttobecontrolled.WemaychooseoneortwoorallofPIDmodules,forexample,wecanuseproportionalandintegralmodulestomakeupofPIcontroller.Asforthesmartcar,itisnonecessarytoconsiderthetrackswhichhavebeengoneacross,soweonlyuseproportionalanddifferentialmodulesasPDadjuster,andPadjusterhasbeendescribedpreviously(seeFormula

(2)),andthefollowingformulashowstheDadjuster:

whereenew,eolddefinethedifferencesofthistimeandlasttimewhentheangleiscomputed(heredifferencemeanstheangelbywhichthesteeringgearshouldturn),tisscanningperiodofCMOScamera,kdisdifferential

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1