变压器报告.docx

上传人:b****1 文档编号:414635 上传时间:2022-10-09 格式:DOCX 页数:17 大小:223.20KB
下载 相关 举报
变压器报告.docx_第1页
第1页 / 共17页
变压器报告.docx_第2页
第2页 / 共17页
变压器报告.docx_第3页
第3页 / 共17页
变压器报告.docx_第4页
第4页 / 共17页
变压器报告.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

变压器报告.docx

《变压器报告.docx》由会员分享,可在线阅读,更多相关《变压器报告.docx(17页珍藏版)》请在冰豆网上搜索。

变压器报告.docx

变压器报告

1变压器

变压器是电力系统当中非常重要的电气设备之一,如发生故障将给电力系统带来严重的后果,它的安全运行对于保证电力系统的正常运行和对供电的可靠性,以及电能的质量起着决定性的作用。

正常运行中的电力变压器可能会发生各种各样的故障,会严重影响电力系统整体的连续安全运行,随着我国电力事业的不断发展,比如对于超高压输电的建设,越来越需要大容量的大型电力变压器,其是否能够正常运行影响着整个电网架构的可靠性和安全性。

基于此对电力变压器继电保护装置的性能和动作可靠性提出了更高的要求。

变压器的基本构造,变压器主要是由铁心和绕组两大部分组成,此外还有其它附件。

铁心构成变压器的磁路,用硅钢片叠成以减小磁阻和铁损,绕组构成变压器的电路,用绝缘导线绕制而成,其中接电源的一侧叫一次绕组,接负载的一侧叫二次绕组,对于油浸式变压器,其它附件主要有油箱,油枕,安全气道,气体继电器,分接开关,绝缘套管等,其作用是共同保证变压器安全,可靠的运行,邮箱中的变压器油用来绝缘,防潮和散热,油枕用来隔绝空气,避免潮气入侵,安全气道用来保护油箱防止爆裂,气体继电器是变压器的主要保护装置,当变压器内部发生故障时,则发出报警信号,重则自动跳闸,避免事故扩大。

变压器的基本工作原理,变压器的基本工作原理是电磁感应原理,变压器空载运行时,一次绕组中通过空载励磁电流I0,在铁心中激起交变主磁通,在一次,二次绕组中乘胜感应电动势E1,E2,变压器负载运行时,只要一次电压U1一定,则铁心中主磁通最大值就基本一定,当二次电流I2增大时,一次电流I1也必然随之增大,以维持主磁通的基本不变,并维持变压器的功率平衡。

变压器一次,二次侧的电压与匝数成正比,而与电流与匝数成反比。

KU=U1/U2

2变压器故障的类型和状态

故障类型:

电力变压器故障一般分成两类,即油箱的内部故障和外部故障。

内部故障指的是在变压器的油箱内发生的故障,比如高、低压侧绕组之间的相间短路和匝问短路故障,单相接地短路故障(比如发生在中性点接地系统中的侧绕组处)等,另外,还有诸如铁芯绕损等小型故障,变压器油箱内的故障十分危险,由于油箱内充满了变压器油,故障时的短路电流使变压器的油急剧的分解气化可能产生大量的可燃性气体瓦斯,很容易引起油箱的爆炸。

外部故障一般指的是发生在绝缘套管和变压器绕组的引出线上的相问短路或者接地短路等故障。

电力变压器工作的非正常状态。

这里指的非正常运行状态一般包括:

过电流和过电压导致的过励磁故障,一般由外部接地短路故障引起。

过负荷。

油面降低,一般由油箱漏油故障引起。

温度升高,一般由制冷系统的故障引起。

这些非正常的变压器运行状态可使得绕组和铁芯等构件过热,进而降低了变压器的绝缘性能。

3变压器的保护

3.1变压器的瓦斯保护

当变压器油箱内部发生故障时,短路电流产生的电弧使变压器油和其他绝缘材料分解,从而产生大量的可燃性气体,人们将这种可燃性气体统称为瓦斯气体,故障程度越严重,产生的瓦斯气体越多,流速越快,气体中还加杂着细小的,灼热的变压器油。

瓦斯保护利用变压器油受热分解所产生的热气和热油流来动作的保护。

变压器瓦斯保护又称为气体继电保护,气体继电器有三种形式即浮筒式挡板式及由开口杯与挡板构成的复合式,目前推荐采用复合式气体继电器,对于保护油浸式电力变压器。

防止其内部故障很起着很重要的作用,比如,在变压器出现油箱漏油故障时,可发出跳闸信号。

气体继电器是瓦斯保护装置的主要元件,安装在油箱和油枕二者的连接管道中根据物体的物理特性,热的气流和油流在密闭的油箱内向上冲,为了保证气流和油流能顺利通过气体继电器,安装时应注意,变压器顶盖与水平面应有百分之一到百分之一点五的坡度,连接管道应有百分之二到百分之四的坡度.

瓦斯保护一般是按气体容积进行整定,范围为250—300立方厘米,由于气体保护能反应油箱内各种故障,且动作,灵敏,可靠,迅速,所以仍然是变压器油箱内部故障最有效的主保护之一,但应与纵差保护或电流速断保护相配合使用。

轻瓦斯动作。

当变压器油箱内部出现的故障比较轻微时,故障造成的少量气体进入气体继电器,然后自上而下地排油,此使得油面降低,此时,上触点会被接通,信号回路启动,进而再发出音响或者灯光警示信号。

重瓦斯动作:

当变压器油箱内部出现的故障比较严重时,故障产生的大量气体会使得变压器油箱中的油发生流动,经由联管最终进入到油枕里面,这些油和气的混合物经过气体继电器时,使下触点被接通,跳闸回路启动,接着则发出音响或者灯光警示信号。

图1.1瓦斯保护的原理接线图

图中KG为气体继电器。

信号KS1继电器KS1用于轻瓦斯保护,动作于信号,信号继电器KS2用于重瓦斯保护。

经KS2起动出口中间继电器KCO后,使断路器跳闸为防止变压器严重故障时,由于油流不稳使重瓦斯触点时通时断,导致保护不能可靠动作跳闸,其出口中间继电器KCO应选用有保持线圈的继电器。

变压器充油和继电器试验时,为防止继电器误动,应用切换片将重瓦斯保护切换至作用于信号。

瓦斯保护的特点是结构简单,动作迅速,灵敏度高,当变压器内部发生严重漏油或,但不能迅速反应变压器箱体外部的故障,因此,变压器还必须装设电流速断或差动保护。

3.2变压器的电流速断保护

对于容量较小的变压器,当其过电流的保护动作时限大于0.5秒时,可在电源测装设电流速断保护。

它与瓦斯保护配合,以反映变压器绕组及变压器电源测的引出线套管上的各种故障。

电流速断保护的单相原理接线如图。

当变压器的电源测为直接接地系统时,保护采用完全星形接线,若为非直接接地系

统,可采用两相不完全星形接线。

保护的动作电流可按下列之一选择,大于变压器负荷侧K2点短路时流过保护的最大短路电流,即IOP=KrelIk.max。

Krel可靠系数,对电磁型电流继电器,取1.3—1.4。

Ik.max最大运行方式下,变压器低压侧母线发生短路故障时,流过保护的最大短路电流。

躲过变压器空载投入的励磁涌流,通常取IOP=(3—5)IN。

IN保护安装测变压器的额定电流。

取上述两个条件较大值作为整定值。

保护的灵敏度,要求在保护安装处K1点发生两相金属性短路进行校验即ksen=Ik.min/Iop≧2。

图1.2变压器电流速断保护单相原理接线图

保护动作后,瞬时断开变压器两侧断路器。

电流速断保护具有接线简单,动作迅速等优点,能瞬时切除变压器电源测引出线和套管,以及变压器内部部分线圈的故障。

它的缺点不能是不能保护电力变压器的整个范围,当系统容量较小时,保护范围较小。

灵敏度难满足要求,在无电源的一侧,套管到断路器一段故障不能反应,要靠相间短路的后备保护,切除故障的时间较长,对系统安全运行不利,对于并列运行的变压器,负荷侧故障时将由相间短路的后备保护无选择性的切除所有变压器。

变压器的电流速断保护与瓦斯保护,相间短路的后备保护比较好,因此广泛用于小容量变压器的保护中。

3.3变压器的纵差保护

变压器的纵联差动保护用来反映变压器绕组,引出线及套管上的各种短路故障,是变压器的主保护。

纵联差动保护是按比较被保护的变压器两侧电流的大小和相位的原理实现的。

为了实现这种比较,在变压器两侧各装设一组电流互感器TA1,TA2,其二次侧按环流法连接,若变压器两端的电流互感器一次侧的正极性端子均设置于靠近母线的一侧,则将他们二次侧的同极性端子相连接,再将差动继电器的线圈按环流法接入,构成纵联差动保护。

变压器的纵差保护与输电线路的纵差保护相似,工作原理相同,但由于变压器高压侧和低压侧的额定电流不同,为了保证变压器纵差保护的正常运行,必须选择好适应变压器两侧电流互感器的变比和接线方式,保证变压器在正常运行和外部短路时两侧的二次电流相等。

其保护范围为两侧电流互感器TA1,TA2之间的全部区域,包括变压器的高,低压绕组,套管及引出线等。

图1.3变压器纵联差动保护单相原理接线图

正常运行和外部短路时,流过差动继电器的电流为Ir=I2-III2,在理想的情况下,其值等于零,但实际上由于电流互感器特性,变比等因素,流过继电器的电流为不平稳电流Iunb,变压器内部故障时,流入差动继电器的电流为Ir=II2+III2即为短路点的短路电流,当该电流大于KD的动作电流时,KD动作。

变压器纵联差动的保护有很多类型,常用变压器纵联差动保护装置如图说明。

图1.4差动继电器的平衡线圈的接线

变压器电磁型纵联差动保护装置,在变压器纵联差动保护中,该装置的平衡线圈Wb的作用是消除由于变压器两侧的电流互感器的计算变比与变准变化而不同而引起的不平衡电流影响的作用,适当选择平衡线圈匝数并应注意极性使之与差动线圈的磁通势相等,则差动继电器的合成磁通势为零。

二次线圈无感应电动势,执行元件中的电流为零,消除了不平衡电流的影响。

纵联差动保护的特点,是产生不平衡电流的因素很多,现对不平稳电流产生的原因及减小或消除其影响的措施分别如下。

两侧电流互感器型号不同而产生的不平衡电流,由于变压器两侧的额定电压不同,所以其两侧,电流互感器的型号也不会相同。

它们的饱和特性和励磁电流都是不同的,因此在变压器的差动保护中将引起较大的不平衡电流外部短路时,这种不平衡电流会更大,为了解决这个问题一方面,应按百分之10误差的要求选择两侧的电流互感器,以保证在外部短路的情况下其二次电流的误差不超过百分之10.另一方面在确定差动保护的动作电流时引入一个同型系数Kst来消除互感器不同型号的影响。

电流互感器实际变比与计算变化比不同时的影响及其平衡办法,电流互感器选用的是定型产品。

定型产品的变比都是标准化的,这就出现电流互感器的计算变比与实际变比不完全相符的问题,以至在差动回路中产生不平衡电流。

为了不平衡电流对纵联差动保护的影响,一般采用自耦变流器或利用差动继电器的平衡线圈予以补偿,自耦变流器通常是接在二次电流较小的一侧,改变自耦变压器TBL的变比,使得在正常运行状态下接入差动回路的二次电流相等从而补偿了不平衡电流。

磁势平衡法通过选择两侧的平衡绕组Wb1,Wb2匝数,并使之满足关系式II2(Wd+Wb1)=III2(Wd+Wb2)

Wd—差动绕组

Wb1,Wb2—平衡绕组

图1.5用自耦变流器

 

图1.6用差动继电器中的平衡线圈

变压器带负荷调整分接头而产生的不平衡电流,电力系统中常用带负荷调整变压器分接头的方法来调整系统的电压。

调整分接头实际上就是改变变压器的变比其结果将必然破坏电流互感器二次电流的平衡关系,产生新的不平衡电流。

因此在,在带负荷调压的变压器差动保护中,应在整定计算中加以考虑,急用提高保护动作电流的方法来躲过这种不平衡电流的影响。

3.4变压器的相间短路后备保护

对由外部相间短路引起的变压器过电流,应装设相应的保护作为后备保护,包括电流保护,复合电压起动的过电流保护,负序电流保护,阻抗保护等。

保护动作后,应带时限动作于跳闸。

相间短路后备保护用于反映相间短路引起的变压器过电流,同时作为瓦斯保护和纵差保护的后备保护,其动作时限按电流保护的阶梯形原则来整定,延时动作于跳开变压器各电源侧断路器,相间短路的后备保护形式比较多,过电流保护和低压起动的过电流保护宜用于中小容量的降压变压器。

当回路发生故障时,回路上的保护将在瞬间发出信号断开回路的开断元件(如断路器),这个立即动作的保护就是主保护。

当主保护因为各种原因没有动作,在延时很短时间后,另一个保护将启动并动作,将故障回路跳开。

这个保护就是后备保护。

后备保护是在主保护不动作时再动作,一般有延时来判断主保护动作与否,它包括近后备和远后备。

远后备保护:

当主保护或断路器拒动时,由相邻电力设备或线路的保护来实现的后备保护。

  

近后备保护:

当主保护拒动时,由本设备或线路的另一套保护来实现后备的保护;当断路器拒动时,由断路器失灵保护来实现近后备保护。

主保护反应变压器内部故障,后备保护反应变压器外部故障。

保护范围主要是变压器外部线路。

过电流保护宜用于降压变压器,过电流保护采用三相式接线,且保护应装设在电

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 中国风

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1