农业大棚环境监控系统方案设计.docx

上传人:b****4 文档编号:3756044 上传时间:2022-11-25 格式:DOCX 页数:7 大小:31.45KB
下载 相关 举报
农业大棚环境监控系统方案设计.docx_第1页
第1页 / 共7页
农业大棚环境监控系统方案设计.docx_第2页
第2页 / 共7页
农业大棚环境监控系统方案设计.docx_第3页
第3页 / 共7页
农业大棚环境监控系统方案设计.docx_第4页
第4页 / 共7页
农业大棚环境监控系统方案设计.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

农业大棚环境监控系统方案设计.docx

《农业大棚环境监控系统方案设计.docx》由会员分享,可在线阅读,更多相关《农业大棚环境监控系统方案设计.docx(7页珍藏版)》请在冰豆网上搜索。

农业大棚环境监控系统方案设计.docx

农业大棚环境监控系统方案设计

农业大棚环境监控系统方案

一简介2

二农业大棚环境监控概述2

三背景与需求2

四系统的组成3

1)总体架构3

(2)系统有两种典型配置结构3

(3)传感信息采集4

五大棚监测点现场分布4

六系统的软件5

七常用的传感器5

1、空气温湿度传感器5

2、土壤温度传感器6

3、土壤水分传感器6

4、CO2含量传感器6

5、NH3含量传感器7

6、光照度传感器7

2014.9

一简介

近年来,温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用。

种植环境中的温度、湿度、光照度、CO2浓度等环境因子对作物的生产有很大的影响。

传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。

  针对目前大棚发展的趋势,提出了一种大棚智能监控系统的设计。

根据大棚智能监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互连网或者手机信息了解区域大棚的实时状况。

基于GPRS的智能大棚监控系统使这些成为可能。

二农业大棚环境监控概述

农业温室大棚监控系统通过实时采集农业大棚内空气温度、湿度、光照、土壤温度、土壤水分等环境参数,根据农作物生长需要进行实时智能决策,并自动开启或者关闭指定的环境调节设备。

通过该系统的部署实施,可以为农业生态信息自动监测、对设施进行自动控制和智能化管理提供科学依据和有效手段。

农业温室大棚监控及智能控制解决方案是通过可在大棚内灵活部署的各类无线传感器和网络传输设备,对农作物温室内的温度,湿度、光照、土壤温度、土壤含水量、CO2浓度等与农作物生长密切相关环境参数进行实时采集,在数据服务器上对实时监测数据进行存储和智能分析与决策,并自动开启或者关闭指定设备(如远程控制浇灌、开关卷帘等)。

三背景与需求

 在每个智能农业大棚内部署无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等,分别用来监测大棚内空气温湿度、土壤温度、土壤水分、光照度、CO2浓度等环境参数。

为了方便部署和调整位置,所有传感器均应采用电池供电、无线数据传输。

大棚内仅需在少量固定位置提供交流220V市电(如:

风机、水泵、加热器、电动卷帘)。

  每个农业大棚园区部署1套采集传输设备(包含路由节点、长距离无线网关节点、Wi-Fi无线网关等),用来覆盖整个园区的所有农业大棚,传输园区内各农业大棚的传感器数据、设备控制指令数据等到Internet上与平台服务器交互。

  在每个需要智能控制功能的大棚内安装智能控制设备(包含一体化控制器、扩展控制配电箱、电磁阀、电源转换适配设备等),用来接受控制指令、响应控制执行设备。

实现对大棚内的电动卷帘、智能喷水、智能通风等行为的实现。

四系统的组成

1)总体架构

  系统的总体架构分为现场数据采集、网络传输、智能数据处理平台和远程控制四部分。

  

(2)系统有两种典型配置结构

  ■两层网络,系统由两类点构成:

  无线传感器节点,包括无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等;

  无线网关节点,包括Wi-Fi无线网关或GPRS无线网关。

  该结构适用于园区已经有Wi-Fi局域网覆盖,或是可以采用GPRS直接上传数据的场景。

在此结构中,只需要在合适的区域部署无线网关,即可实现传感器数据的采集和上传。

 ■三层网络,系统由三类点构成:

  无线传感器节点,包括无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等;

  无线网关节点;

  数据路由器。

  该结构适用于园区没有Wi-Fi局域网覆盖,也不准备采用GPRS直接上传数据的场景。

在此结构中,需要部署数据路由节点和无线网关,无线网关与数据路由节点之间以长距离无线通信方式进行数据的交换,在区域较大,节点间通信距离不足时,无线网关还可以相互之间进行自动数据中继,扩大监控网络的覆盖范围。

  (3)传感信息采集

  在监控网络中,无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等传感器均支持低功耗运行,可使用廉价的干电池供电长期工作。

同时,所有的无线传感器节点均运行低功耗多跳自组网协议,可为其它节点提供数据的自动中继转发,以扩大监测网络的覆盖范围,增加部署灵活性。

  低功耗多跳自组网协议是在IEEE802.15.4协议的基础上建立的,无线通信的频率选择可以是2.4GHz或780MHz。

  传感器数据通过协议传送到无线网关节点上,无线网关节点再经过数据路由节点或直接将传感器数据发送到数据平台的服务器上。

用户可以通过有线网络/无线网络访问数据平台,实时监测大棚现场的传感器参数,控制大棚现场的相关设备。

五大棚监测点现场分布

大棚现场主要负责大棚内部环境参数的采集和控制设备的执行,采集的数据主要包括农业生产所需的光照、空气温度、空气湿度、土壤温度、土壤水分、CO2浓度等参数。

  传感器的数据上传采用低功耗无线传输模式,传感器数据通过无线发送模块,采用标准协议将数据无线传送到无线网关节点上,用户终端和一体化控制器间传送的控制指令也通过无线发送模块传送到中心节点上,省却了通讯线缆的部署工作。

中心节点再经过边缘网关将传感器数据、控制指令封装并发送到位于internet上的系统业务平台。

用户可以通过有线网络/无线网络访问系统业务平台,实时监测大棚现场的传感器参数,控制大棚现场的相关设备。

低功耗无线传输模式使得大棚现场内各传感器部署灵活、扩展方便。

  控制系统主要由一体化控制器、执行设备和相关线路组成,通过一体化控制器可以自由控制各种农业生产执行设备,包括喷水系统和空气调节系统等,喷水系统可支持喷淋、滴灌等多种设备,空气调节系统可支持卷帘、风机等设备。

  采集传输部分主要将设备采集到的数值传送到服务器上,现有大棚设备支持Wi-Fi、GPRS、长距离无线传输等多种数据传输方式,在传输协议上支持IPv4联网协议。

  业务平台负责对用户提供智能大棚的所有功能展示,主要功能包括环境数据监测、数据空间/时间分布、历史数据、超阈值告警和远程控制五个方面。

用户还可以根据需要添加视频设备实现远程视频监控功能。

数据空间/时间分布将系统采集到的数值通过直观的形式向用户展示时间分布状况(折线图)和空间分布状况(场图)、历史数据可以向用户提供历史一段时间的数值展示;超阈值告警则允许用户制定自定义的数据范围,并将超出范围的情况反映给用户。

六系统的软件

系统平台软件共由以下部分组成:

  

(1)数据收集、存储服务软件

  完成传感器数据的获取、解析、分类,最后按预设的格式存入数据库。

  

(2)展示、决策软件

  图形化界面,从数据库中读取相应数据,以表格和曲线的方式将传感器数据显示出来,支持多种查询显示方式。

可自定义决策系统控制对象及决策算法,与对象控制软件互联实现自动化控制。

  (3)远程控制软件

完成现场控制对象的操作,图形化操作界面,支持重定义远端开关名称等信息,可与决策软件进行对接,实现自动化控制。

七常用的传感器

1、空气温湿度传感器

  用于检测设施农业的空气环境温湿度,一般使用的有效温度范围在0~50℃,有效湿度范围在30~90%。

大部分安装在温室、大棚或畜禽舍中空气流通较好的遮阳处,一般根据温室、大棚或畜禽舍长度安装1~4个不等,以避免空气流通差导致的局部小气候效应。

2、土壤温度传感器

   用于检测土壤温度,一般使用的有效温度范围在10~40℃(土壤热容积较大,温度变化不很明显),安装在作物根部土壤中,以测量作物的生长、发育的土壤温度及浇水后土壤温度变动情况。

根据温室或大棚长度安装2~4个不等,安装时根据不同作物根系深度确定埋土深度。

3、土壤水分传感器

   用于检测土壤中水分含量,便于及时和适量浇灌。

目前有两种表示方式,其一为容积含水量,即V/V%,其二为质量含水量,即M/M%,大部分产品以容积含水量表示,一般有效范围在10~70%。

因不同土质能容纳水量不同,故不同土质在浇灌等量水后,所显示的容积含水量会有不同。

根据温室或大棚长度安装2~4个不等,安装时根据不同作物根系深度确定埋土深度。

4、CO2含量传感器

   用于检测环境中CO2含量,便于决定是否增施气肥或需通风换气。

一般以ppm为单位,有效范围在100~1000ppm之间。

可以用在温室、大棚中,也可以用在密封/半密封的畜禽舍中。

温室、大鹏中主要检测有光照情况下CO2含量是否低于作物光和作用的最佳浓度,在畜禽舍中主要检测密封环境下CO2浓度是否超出影响畜禽能生长发育的最大浓度,以便于及时通风换气。

独栋温室、大棚或畜禽舍安装1个即可。

5、NH3含量传感器

   用于检测畜禽舍环境中NH3的含量,以决定是否需要通风换气和清除粪便。

一般以ppm为单位,有效范围在0~100ppm之间。

养鸡场应用居多,尤其是蛋鸡场,因为鸡的消化系统不能完全消化饲料,大量蛋白质通过粪便排出后,经过复杂的化学反应转变为NH3,而NH3又是影响鸡蛋产量的关键因素,一旦NH3浓度超过一定值,蛋鸡产蛋率明显下降,甚至不产蛋,需要数周后才能恢复。

一般安装1个即可。

6、光照度传感器

用于检测作物生长环境的光照强度,以决定是否需要遮阳或补光。

单位lux(勒克司),有效范围在200~200000Lux。

一般安装在温室、大棚中,用来检测作物生长所需要的光照强度是否满足最基本需要或是否达到作物的最佳生长状态,如与CO2传感器联合使用,可以为何时增施气肥提供参考。

安装时考虑向阳并且避免被遮挡。

一般安装1个即可。

 

系统实现功能

1:

可在线实时24小时连续的采集和记录监测点位的温度、湿度、风速、二氧化碳、光照、空气洁净度、供电电压电流等各项参数情况,以数字、图形和图像等多种方式进行实时显示和记录存储监测信息,监测点位可扩充多达上千个点。

2:

可设定各监控点位的温湿度报警限值,当出现被监控点位数据异常时可自动发出报警信号,报警方式包括:

现场多媒体声光报警、网络客户端报警、电话语音报警、手机短信息报警等。

上传报警信息并进行本地及远程监测,系统可在不同的时刻通知不同的值班人员;

3:

数据集中器提供USB接口,在没有配监控电脑或监控电脑损坏、瘫痪,可随时用U盘导出将数据转至其它电脑。

4:

数据集中器端提供具有信号输出协议的端口,可接通信设备(GPRSIPMODEM等)进行无线传输。

5:

温湿度监控软件采用标准windows98/2000/XP全中文图形界面,实时显示、记录各监测点的温湿度值和曲线变化,统计温湿度数据的历史数据、最大值、最小值及平均值,累积数据,报警画面。

6:

监控主机端利用监控软件可随时打印每时刻的温湿度数据及运行报告。

7:

强大的数据处理与通讯能力,采用计算机网络通讯技术,局域网内的任何一台电脑都可以访问监控电脑,在线查看监控点位的温湿度变化情况,实现远程监测。

系统不但能够在值班室监测,领导在自己办公室可以非常方便地观看和监控。

8:

系统可扩充多种记录数据分析处理软件,能进行绘制棒图、饼图,进行曲线拟合等处理,可按TEXT格式输出,也能进入EXCEL电子表格等office的软件进行数据处理。

9:

控制软件的编制采用软件工程管理,开放性与可扩充性极强,由于采用硬件功能的软件化的系统设计思想及系统硬件的模块化、通讯网络化设计,系统可根据需要升级软件功能与扩展硬件种类。

2、使用标准

1个单位的照度大约为1个烛光在1米距离的光亮度。

夏日晴天强光下照度为10万Lux(3~30万Lux);

阴天光照度为1万Lux;

日出、日落光照强度为300~400Lux;

室内日光灯照度为30~50Lux;

夜里0.3~0.03Lux(明亮月光下);

0.003~0.0007Lux(阴暗的夜晚)

以上参数公供参考

3、技术参数:

供电电压:

12VDC~30VDC

感光体:

带滤光片的硅蓝光伏探测器;

波长测量范围:

380nm~730nm;

准确度:

±7%

重复测试:

±5%;

温度特性:

±0.5%/℃;

测量范围:

0~200000Lux

输出形式:

二线制4~20mA电流输出

三线制0~5V电压输出

液晶显示输出

232/485网络输出

使用环境:

0℃~40℃、0%RH~70%RH(带液晶);

0℃~70℃、0%RH~70%RH(不带液晶)

大气压力:

80~110kPa

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1