高鸿业微观经济学业第七版课后答案18第三章消费者选择.docx
《高鸿业微观经济学业第七版课后答案18第三章消费者选择.docx》由会员分享,可在线阅读,更多相关《高鸿业微观经济学业第七版课后答案18第三章消费者选择.docx(33页珍藏版)》请在冰豆网上搜索。
高鸿业微观经济学业第七版课后答案18第三章消费者选择
第三章消费者选择
第一部分教材配套习题本习题详解
1.已知一件衬衫的价格为80元,一份肯德基快餐的价格为20元,在某消费者关于这两种商品的效用最大化的均衡点上,一份肯德基快餐对衬衫的边际替代率MRS是多少?
解答:
用X表示肯德基快餐的份数;Y表示衬衫的件数;MRSXY表示在维持效用水平不变的前提下,消费者增加一份肯德基快餐消费时所需
要放弃的衬衫的消费数量。
在该消费者实现关于这两种商品的效用最大化时,在均衡点上有边际替代率等于价格比,则有:
YPX201
MRSXY
XPY804
它表明,在效用最大化的均衡点上,该消费者关于一份肯德基快餐对衬衫的边际替代率MRS为0.25。
2.假设某消费者的均衡如图3—1所示。
其中,横轴OX1和纵轴OX
2分别表示商品1和商品2的数量,线段AB为消费者的预算线,曲线U为消费者的无差异曲线,E点为效用最大化的均衡点。
已知商品1的价格P1=2元。
求:
(1)求消费者的收入;
(2)求商品2的价格P2;
(3)写出预算线方程;
(4)求预算线的斜率;
(5)求E点的MRS12的值。
图3—1某消费者的均衡
解答:
(1)横轴截距表示消费者的收入全部购买商品1的数量为30单位,且已知P1=2元,所以,消费者的收入M=2×30=60元。
(2)图3—1中纵轴截距表示消费者的收入全部购买商品2的数量为20
M60
单位,且由(1)已知收入M=60元,所以,商品2的价格P2=20=20=
3(元)。
(3)由于预算线方程的一般形式为P1X1+P2X2=M,所以本题预算线方程具体写为:
2X1+3X2=60。
2
(4)(4)将(3)中的预算线方程进一步整理为X2=-X1+20。
所以,预算线的斜率为
-2。
3
(5)在消费者效用最大化的均衡点E
上,有MRS12
X2
P1
,即无差异曲线斜率
X1
P2
的绝对值即MRS等于预算线斜率的绝对值
P1。
因此,MRS=P1=
2。
P2
12
P2
3
3.对消费者实行补助有两种方法:
一种是发给消费者一定数量的实物补助,
另一种是发给消费者一笔现金补助,这笔现金额等于按实物补助折算的货币量。
试用无差异曲线分析法,说明哪一种补助方法能给消费者带来更大的效用。
解答:
一般说来,发给消费者现金补助会使消费者获得更大的效用。
其原因在于:
在现金补助的情况下,消费者可以按照自己的偏好来购买商品,以获得尽可能大的效用。
如图3—3所示。
图3—3实物补贴和货币补贴
在图中,AB是按实物补助折算的货币量等于现金补助情况下的预算线。
在现金补助的预算线AB上,消费者根据自己的偏好选择商品
1和商品2的购
买量分别为X1*
和X2*,从而实现了最大的效用水平U2,即在图3—3中表现
为预算线AB
和无差异曲线U2相切的均衡点E。
在实物补助的情况下,则通常不会达到最大的效用水平U2。
因为,譬如,当实物补助两商品数量分别为x11、x21的F点,或者为两商品数量分别为x12和x22的G点时,则消费者获得无差异曲线U1所表示的效用水平,显然,U1<U2。
4.假设某商品市场上只有A、B两个消费者,他们的需求函数各自为QdA=20-4P和
QdB=30-5P。
(1)列出这两个消费者的需求表和市场需求表。
(2)根据
(1),画出这两个消费者的需求曲线和市场需求曲线。
解答:
(1)由消费者A和B的需求函数可编制消费
A和B的需求表。
至于市场的需求
表的编制可以使用两种方法,一种方法是利用已得到消费者
A、B的需求表,将每一价格水
平上两个消费者的需求数量加总来编制市场需求表;另一种方法是先将消费者
A和B的需
求函数加总求得市场需求函数,即市场需求函数
Qd=QAd+QBd=(20-4P)+(30-5P)=50-
9P,然后运用所得到的市场需求函数
Qd=50-9P来编制市场需求表。
按以上方法编制的
需求表如下所示。
P
A的需求量QAd
A的需求量QBd
市场需求量QAd+QBd
0
20
30
50
1
16
25
41
2
12
20
32
3
8
15
23
4
4
10
14
5
0
5
5
6
0
0
(2)由
(1)中的需求表,所画出的消费者A和B各自的需求曲线以及市场的需求曲线如图3—4所示。
图
3-4
消费者
A和
B各自的需求曲线以及市场的需求曲线
在此,需要特别指出的是,市场需求曲线有一个折点,该点发生在价格
P=5和需
求量
Qd=5
的坐标点位置。
关于市场需求曲线的这一特征解释如下:
市场需求曲线是市
场上单个消费者需求曲线的水平加总,即在
P≤5的范围,市场需求曲线由两个消费者
需求曲线水平加总得到,在
P≤5
的范围,市场需求函数
Qd=QdA+QdB=(20-4P)+(30
-5P)=50-9P成立;;而当P>5时,消费者A的需求量为0,只有消费者B的需求
曲线发生作用,所以,P>5时,B的需求曲线就是市场需求曲线。
当P>6时,只有
消费者B的需求也为0。
市场需求函数是:
Q=
0
P>6
30-5P
5≤P≤6
50-9P
0≤P≤5
市场需求曲线为折线,在折点左,只有B消费者的需求量;在折点右边,是AB两
个消费者的需求量的和。
5.某消费者是一个风险回避者,他面临是否参与一场赌博的选择:
如果他参与这场赌博,他将以5%的概率获得10000元,以95%的概率获得10元;如果他不参与这场赌博,他将拥有509.5元。
那么,他会参与这场赌博吗?
为什么?
解答:
该风险回避的消费者不会参与这场赌博。
因为如果该消费者不参与这场赌博,
那么,在无风险条件下,他可拥有一笔确定的货币财富量509.5元,其数额刚好等于风险条件下的财富量的期望值10000×5%+10×95%=509.5元。
由于他是一个风险回避者,所以在他看来,作为无风险条件下的一笔确定收入509.5元的效用水平,一定大于风险条件下这场赌博所带来的期望效用。
二、计算题
1.已知某消费者关于
X、Y
两商品的效用函数为
U=
xy
其中
x、y
分别为对商品
X、Y
的消费
量。
(1)求该效用函数关于
(2)在总效用水平为
X、Y两商品的边际替代率表达式。
6的无差异曲线上,若x=3,求相应的边际替代率。
(3)在总效用水平为
6的无差异曲线上
若x=4,求相应的边际替代率。
(4)该无差异曲线的边际替代率是递减的吗?
1
1
=U'(Y)=1
1
1
解答:
(1)MUX
=U'(X)=1X2Y2
MUY
X2Y2
2
2
1
1
1
Y
MUX
X2Y
2
Y
MRSXY
=2
11
=
X
MUY
X2Y2
X
(2)6=xy,XY=36;
若x=3,y=12
MRSXY
=
Y
=
12=4
X
3
(3)6=xy,XY=36;
若x=4,y=9
MRSXY
=
Y
=
9=2.25
X
4
(4)当x=3时,MRSXY=4;当x=4时,MRSXY=2.25,所以该无差异曲线的边际替代率是递减的。
5.已知某消费者每年用于商品1和商品2的收入为540元,两商品的价格分别为
P1=20元和P2=30元,该消费者的效用函数为U=3X1X22,该消费者每年购买这两种商
品的数量各应是多少?
每年从中获得总效用是多少?
解答:
MU1
U(X1)
U
3X22
X1
MU2
U(X2)
U
6X1X2
X2
MU1,MU2
MU1
MU2
把已知条件和
值带入下面均衡条件
1
2
P
P
PX1
1
P2X2
M
3X22
6X1X2
得方程组:
20
30
20X1
30X2
540
解方程得,X1=9,X2=12,
U=3X1X22=
3888
3
5
3.假定某消费者的效用函数为
U
X18X28,两商品的价格分别为P1,P2,消费者的收入
为M。
分别求该消费者关于商品
1和商品
2的需求函数。
MU
1
P
1
解:
根据消费者效用最大化的均衡条件:
1
,其中,由已知的效用函数
MU2
P2
3
5
3X1
5
5
3
3
UX18X28可得:
MU1
dTU
8
X28,MU2
dTU
5X18X28
dX1
8
dX2
8
于是,整理得:
3X2
P1
即有X2
5P1X1
(1)
5X1
P2
3P2
把
(1)式代入约束条件
P1X1P2X2
M,有,P1X1
P2
5P1X1
M
3P2
解得:
X1
3M,代入
(1)式得X2
5M
8P1
8P2
所以,该消费者关于两商品的需求函数为
X1
3M,X2
5M
8P18P2
4.假定某消费者的效用函数为Uq0.5
3M
,其中,q为某商品的消费量,M为收
入。
求:
(1)该消费者的需求函数;
(2)该消费者的反需求函数;
(3)当p
1,q
4时的消费者剩余。
12
U
解:
(1)商品的边际效用为
MU
U
0.5q
0.5
,货币的边际效用为
q
3
M
由实现消费者均衡条件
MU
可得:
0.5q0.5
3,整理得消费者的需求函数为
p
p
1
q36p2。
(2)根据需求函数q
12
,可得反需求函数
p
1q0.5
36p
6
1
1
2
1
1
(3)消费者剩余CS
4
1q
0.5
dqpq
1q2
4
0
3
3
3
3
0
6
3
5.设某消费者的效用函数为柯布—道格拉斯类型的,即
U
xy
,商品x和商品
y的价格分别为Px和Py,消费者的收入为
M,
和
为常数,且
1。
(1)求该消费者关于商品
x和商品y的需求函数。
(2)证明当商品x和商品y的价格以及消费者的收入同时变动一个比例时,消费者对两商品的需求量维持不变。
(3)证明消费者效用函数中的参数和分别为商品x和商品y的消费支出占消
费者收入的份额。
MUx
U
x
1y
解:
(1)由消费者的效用函数
Ux
y,解得:
x
U
y1
MUy
x
y
消费者的预算约束方程为PXx
Pyy
M
MUxPX
根据消费者效用最大化的均衡条件MUyPy,代入已知条件,解方程组得消费
PxxPyyM
者关于商品x和商品y的需求函数分别为:
x=aM,y=M
PXPy
(2)商品x和商品y的价格以及消费者的收入同时变动一个比例,相当于消费者的
预算线变为Pxx
Pyy
M,其中
为一非零常数。
MUx
PX
此时消费者效用最大化的均衡条件为
MUy
Py
,由于
0,故该方程组化
Pxx
Pyy
M
MUx
PX
为MUy
Py
,显然,当商品x和商品y的价格以及消费者的收入同时变动一个
Pxx
PyyM
比例时,消费者对两商品的需求关系维持不变。
(3)由消费者的需求函数可得:
Pxx,
Pyy
,式中参数
为商品x的消费支
M
M
出占消费者收入的份额和参数
为商品y的消费支出占消费者收入的份额。
6.假定肉肠和面包卷是完全互补品。
人们通常以一根肉肠和一个面包卷为比率做一
个热狗,并且
已知一根肉肠的价格等于一个面包卷的价格。
(1)求肉肠的需求的价格弹性。
(2)求面包卷对肉肠价格的需求的交叉弹性。
(3)如果肉肠的价格是面包卷的价格的两倍,那么,肉肠的需求的价格弹性和面包卷对肉肠价格的需求的交叉弹性各是多少?
解:
(1)令肉肠的需求为X,面包卷的需求为Y,相应的价格为Px、PY,且有Px=PY
该题目的效用论最大化问题可以写为:
maxU(X,Y)=min(X,Y)
s.t.PxX+PYY=M
M
=M
=MPX
解上述方程有:
X=Y=
1
PX
PY
2PX
2
由此可得肉肠的需求的价格弹性为:
edx=-
dX
PX
(M
PX
2
PX
)1
dPX
X
2
M
1
PX
dY
PX
M2
PX
2
(
)1
(2)面包对肉肠的需求交叉弹性为:
exy=
Y
PX
M
dX
2
PX
1
2
(3)maxU(X,Y)=min(X,Y)s.t.PxX+PYY=M
如果Px=2PY,X=Y,解上述方程有:
X=Y=
M
PY
=2M=2MPX
1
PX
3PX
3
可得肉肠的需求价格弹性为:
edx=(2M
PX
2PX
)1
3
2M
1
PX
3
面包对肉肠的需求交叉弹性为:
e
Y
PX
2M
2
PX
)1
=
(
PX
yx
PX
Y
3
2M
1
PX
3
7.已知某消费者的效用函数为U=X1X2,两商品的价格分别为P1=4,P2=2,消费者的收入是M=80。
现在假定商品1的价格下降为P1=2。
求:
(1)由商品1的价格P1下降所导致的总效应,使得该消费者对商品
1的购买量发生多少
变化?
(2)由商品1的价格P1下降所导致的替代效应,使得该消费者对商品
1的购买量发生多
少变化?
(3)由商品1的价格P1下降所导致的收入效应,使得该消费者对商品
1的购买量发生多
少变化?
解答:
利用图解答此题。
在图3-6中,当P1=4,P2=2时,消费者的预算线为AB,效用最大化的均衡点为a。
当P1=2,P2=2时,消费者的预算线为AB′,效用最大化的均衡点
为b。
图3—6
MU1
MU2
(1)先考虑均衡点
a。
根据效用最大化的均衡条件
P
P
1
2
P1X1
P2X2M
X2
X1
得:
4
2
解得:
X2=20,X1=10
4X1
2X2
80
最优效用水平为
U1=X1X2=10×20=200
再考虑均衡点
b。
当商品1
的价格下降为P1=2时,与上面同理,根据效用最大化
X2
X1
的均衡条件得:
2
2
解得:
X2=X1=20
2X1
2X2
80
从a点到b点商品1的数量变化为
X1=20-10=10,这就是P1变化引起的商品1消
费量变化的总效应。
(2)为了分析替代效应,作一条平行于预算线
AB′且相切于无差异曲线U1的补偿预算线
FG,切点为c点。
在均衡点c,总效用保持不变,同时满足边际效用均等法则,X1,X2满足
MU1
MU2
X1
X2
P1
P2
即
2
2
TUX1X2
200
TU
X1X2
200
解得X1=X2。
将X1=X2代入效用约束等式U1=X1X2=200,解得X1=X2=10
14,
从a点到c点的商品1的数量变化为
X1=10
-10
4,这就是P1变化引起的商品1
消费量变化的替代效应。
(3)至此可得,从
c点到b点的商品1
的数量变化为
X1=20-10
6,这就是P1变
化引起的商品
1消费量变化的收入效应。
8.某消费者消费两种商品X和Y,假定无差异曲线在各点的斜率的绝对值均为
y
,x、y为两
x
商品的数量。
(1)说明每一种商品的需求数量均不取决于另一种商品的价格。
(2)证明每一种商品的需求的价格弹性均等于1。
(3)证明每一种商品的需求的收入弹性均等于1。
(4)每一种商品的恩格尔曲线的形状如何?
解答:
(1)根据题意可得,该消费者在效用最大化均衡点满足
无差异曲线的
斜率等于预算线斜率,预算线斜率绝对值等于
px
,所以可得:
y=px
。
整理得:
y=px
py
xpy
py
x。
把y=
px
代入预算约束等式xPx+
y
,解得
M
x=
py