破碎机结构设计.docx

上传人:b****5 文档编号:3361295 上传时间:2022-11-22 格式:DOCX 页数:43 大小:361.96KB
下载 相关 举报
破碎机结构设计.docx_第1页
第1页 / 共43页
破碎机结构设计.docx_第2页
第2页 / 共43页
破碎机结构设计.docx_第3页
第3页 / 共43页
破碎机结构设计.docx_第4页
第4页 / 共43页
破碎机结构设计.docx_第5页
第5页 / 共43页
点击查看更多>>
下载资源
资源描述

破碎机结构设计.docx

《破碎机结构设计.docx》由会员分享,可在线阅读,更多相关《破碎机结构设计.docx(43页珍藏版)》请在冰豆网上搜索。

破碎机结构设计.docx

破碎机结构设计

破碎机结构设计

第1章绪论(破碎机械概述)

1.1破碎机械用途及破碎理论

1.1.1破碎机械概念

破碎机械是对固体物料施加机械力,克服物料的内聚力,使之碎裂成小块物料的设备。

1.1.2破碎机械用途

破碎机械是原料、材料、燃料、电力和钢铁等基础工业部门生产过程中的主要设备之一。

在矿山工程和建设工程上,破碎机械多用来破碎爆破开采所得的天然石料,使之成为规定尺寸的矿石或碎石。

在硅酸盐工业中,固体原料、燃料和半成品需要经过各种破碎加工,使其粒度达到各道工序所要求的尺寸,以便进行进一步加工操作。

通常的破碎过程有粗碎、中碎、细碎三种,其入粒度和出粒度如表1-1所示。

所采用的破碎机械相应地有粗碎机、中碎机、细碎机三种。

表1-1物料粗碎、中

类别

入料粒度

出料粒度

粗碎

300~900

100~350

中碎

100~350

20~100

细碎

50~100

5~15

制备水凝、石灰时,细碎后的物料,还需要进一步粉末。

按照粉磨程度,可分为粗磨、细磨、超细磨三种。

粗磨,物料粉磨

粉细磨,物料粉磨

超细磨,物料粉磨到

软矿石

煤方铅矿菱铁矿无烟煤闪锌矿疏松石灰石

20~40

45

70

90

100

400

2~4

致密石

500~

低于中

灰石

1300

6~10

硬矿石

褐铁矿

820

磁铁矿

1065

矿石性质

矿石种类

压碎强度极限δ

Bkg/cm2

普氏硬度系数f

中硬矿石

花岗岩纯褐铁矿

正长石大理石致密砂岩

1200~

1500

1250

1250~

1560

500~

12~15

1500

1600

高于中硬矿石

半假象赤铁矿灰绿岩闪长石片麻岩

1580~

1955

1800~

2400

2000

1720~

2200

15~18

极硬矿石

石英岩闪长岩班岩

铜矿石铁磁铁矿

玄武岩花岗长英岩

1980~

2180

1800~

2400

1530~

2800

1500~

2800

2340

2000~

300

3500

18~20

目前,在工程上采用的破碎和磨碎方法,主要是借助机械的作用力。

最常见的有以下几种类型。

1)挤压破碎如图1-1所示,是利用两破碎工作面靠近时对物料施加压力,使其破碎作用力逐渐加大。

2)劈裂破碎如图1-2所示,是利用尖齿楔入物料时产生的劈力,力的作用较为集中,使物料沿劈裂面破碎成两块,并在劈力作用点处产生局部破碎。

3)折断或弯曲破碎如图1-3所示,在破碎工作面之间的物料,如同承受集中负荷两支点(或多支点)梁。

除在作用点处受劈力之外,主要是使物料受弯曲力而破碎。

4)磨碎如图1-4所示,它是破碎工作面在物料上相对滑动,对物料施加剪切力这种力作用于物料的表面部分,因此适用于细物料的磨碎。

5)冲击破碎如图1-5所示,冲击力瞬时作用于物料上,物料急剧粉碎。

破碎、磨碎机械,往往是以一种方法为主,以其他一种或两种方法为辅来破碎物料。

现有的破碎理论,均有一定的局限性,没有图完全地解释矿石破碎的实质。

同时,也未总结出适用于工业生产,能切实指导生产实践的数学理论。

目前,比较主要的几种破碎理论是:

面积假说、体积假说和裂缝假说。

面积假说:

破碎物料时消耗的功(W)与被破碎物料所增加的表面积(S)成正比。

应用本假说只有在脆性物料的细磨过程中才能得出与实际相近的结果。

体积假说:

把物料破碎成几何形状相似的小颗粒,所需功耗与被破碎物料的体积或重量成正比。

此假说对于弹性或脆性物料,在粗碎或中碎时,计算结果比较接近实际。

裂缝假说:

此种假说介于前两种假说之间,又称为第三破碎理论。

破碎机械所施加的机械力,可以是挤压力、劈裂力、弯曲力、剪切力等,在一般机械中大多是两种或两种以上机械力的综合。

对于坚硬的物料和塑性的物料,适宜采用产生冲击和劈裂作用的机械;对于粘性和韧性的物料,适宜采用产生挤压和碾磨作用的机械。

1.2破碎机械的分类和运用范围

1.2.1分类

根据机械的工作原理和结构特征,目前在工业生产上广泛使用的破碎机械有:

颚式破碎机、圆锥破碎机、旋回式破碎机、锤式破碎机、辊式破碎机等。

粉磨机械常用的类型有:

球磨机、棒磨机、振动磨机、无介质磨机、喷射式磨机等,它们的总破碎比可达1000以上。

1.2.2运用范围

各种破碎机械的结构和作用不同,其运用范围也不全相同。

颚式破碎机和圆锥破碎机适合于破碎非常坚硬的岩石(极限抗压强度在150~

250MPa);

旋回式破碎机适合于破碎坚硬(极限强度在100MPa左右)的岩石;

锤式破碎机适合于破碎中等硬度的脆性岩石(极限强度在100MPa以下);

辊式破碎机适合于破碎中等硬度的韧性岩石(极限强度在70MPa左右)。

1.2.3各种破碎机械的主要破碎作用颚式破碎机、圆锥破碎机和辊式破碎机等,以挤压作用为主;锤式破碎机和反击破碎机等,以冲击作用为主;轮碾机和辊式磨机等,以挤压作用为主;

球磨机、棒磨机、振动磨机在喷射机等,以磨削兼撞击作用为主;

表1-3破碎机

破碎类别

粗碎

中碎

细碎

粗磨

细磨

超细磨

原料粒度

300

900

mm

100

350mm

50~

100mm

5~

15mm

0.

1mm

60um

原料硬度

150

250

MPa

100MPa左右

70~

100M

Pa

成品粒度

100

350

mm

20~100mm

5~

15mm

0.1mm

60um

5um

破碎比

3~

6

6~

25

10~

40

>10

0

xxxxx学院毕业设计(论文)

圆锥

破碎

辊式

锤式

破碎

破碎

轮碾

反击

式破

碎机

轮碾

球磨

1.3破碎机械发展现状

破碎机是当代飞速发展的经济社会必不可少的一个工业环节。

在各种金属、非金属、化工矿物原料及建筑材料的加工过程中,粉碎作业要消耗巨大的能量,而且又是个低效作业。

物料粉碎过程中,由于作业中产生发声、发热、振动和摩擦等作用,使能源大量消耗。

因而多年来界内人士一直在研究如何达到节能、高效地完成破碎和磨碎过程。

从理论研究到创新设备(包括改造旧有的设备)直至改变生产工艺流程。

目前破碎理论、工艺和设备的研究主要着重于:

(1)研究在破碎中节能、高效的理论,也力求找出新理论突破人们已熟知的破碎三大理论;

(2)研究新的非机械力的高能或多力场联合作用的破碎设备,目前还未有研制成型,正处于研究阶段;(3)改进现有设备,这方面经常是根据用户自己需要来进行,而不见市场上大规模生产或研制新设备。

对于上述诸问题,由于国外矿山自80年代以来发展缓慢使得这方面进展不大。

国外新设备较少,国内由于国营大型矿山投入极少,也没有什么发展,而中型小矿山由于各地原料的需求不等,近几年得到一定的发展。

1.4破碎机械市场前景

破碎机械亦属于矿山、冶金专用设备。

据相关资料,我国国内矿山、冶金和专用设备制造业2006年的总资产额是24044239.8万元,较上一年度增加了23.47%。

在未来几年内,随着中国整体经济的不断升温。

中国的矿山、冶金设备制造这一行业在广泛吸纳各方面资金和技术的情况下,在国家大搞四化建设拉动内需的宏观政策的操控下,在越来越趋于灵活机动的市场机制的引导下,国内的矿山、冶金专用设备制造业完全有望再更上一个新台阶。

第2章单转子可逆式锤式破碎机结构设计

2.1行业现状

目前破碎理论、工艺和设备的研究主要着重于:

1)、研究在破碎中节能、高效的理论,也力求找出新理论突破人们已熟知的破碎

三大理论;

2)、研究新的非机械力的高能或多力场联合作用的破碎设备,目前还没见有工业

化的设备,只是研究阶段;

3)、改进现有设备,这方面经常是根据用户自己需要来进行,而不见市场上大规模生产或研制新设备。

而对于此类破碎机目前仍采用传统的设计制造方法:

1)、机壳内的破碎板(衬板)为一块整板,因为破碎板的磨损并不是每一处都是均匀磨损,当一处磨损较严重时必须整块板换掉,这样浪费成本;破碎板上无刀口,降低了破碎生产率;

2)、筛板采用若干篦条拼接而成,更换费时,降低了刚度,可靠性下降;

3)、锤头与锤杆为一整体,更换时必须将机壳取下,更换费时,影响生产率;

4)、因出料口的结构,此类破碎机只用于工人出料;

5)、破碎机在工作时,灰尘较大,无任何防尘、除尘装置,影响工作人员身体健康、污染环境。

2.2生产需求情况

“十一五”期间,煤炭工业的生产技术水平将明显提高。

国家将建成140个高效安全现代化矿井,国家将加大对煤矿建设项目的支持力度,已先后有17个煤炭建设项目,由国家开发银行出具贷款承诺,还将100多个高档普采工作面升为综采工作面,100多个普采工作面升为高档普采工作面。

这样,中国大型煤矿采掘机械化程度将达到95%。

中型煤矿的机械化程度将达到80%以上;大型煤矿国内先进水平装备率达到20%,国际先进水平装备率达到6%,中型煤矿国内先进水平装备率达到10%,小型煤矿机械化、半机械化程度达30%以上。

据此分析,就我国煤矿这一方面都将推动像此类的矿山机械的进一步发展,还有其它矿山的进一步规模化,系统化,完整化。

所以像此类的矿山机械因结构简单、尺寸紧凑、自重较小、单位产品的功率消耗少;生产率较高,破碎比大,产品的粒度小而均匀,呈立方体形,过度破碎现象少;工作连续可靠,维护修理方便,易损件容易检查和更换,等优点,再加上设计制造的标准化,规模化和新颖化,它将有十分广阔的市场前景。

2.3设计创新点

(1)、改变了传统破碎板(衬板)为一块平板的设计方案,采用截面形状为梯形的三块板拼接而成,使其整个破碎板面形成若于个刀口,提高破碎生产率;随时可根据各块衬板的磨损程度而单独更换,降低了成本。

(2)、筛板为两块拼接而成,提高其刚度,维修更换方便;

(3)、设计了出料斗,使此破碎机既可用于较大规模生产的自动出料,也可用于中小规模的人工出料;

(4)、锤头与锤杆可拆卸,在工作过程中可根据各锤头的磨损情况单独更换,且在更换锤头时不需要将机壳取下,从出料口方可更换锤头,大大减少了更换锤头时间,提高了生产率;

(5)、在机壳内设计了除尘喷水头,当在破碎粉尘较大的物料时可打开喷水头,这样不但减少了粉尘对工作人员健康的影响,也更利于环保。

2.4用途、类型和工作原理

2.4.1用途

单转子可逆式锤式破碎机利用高速回转的锤头冲击物料,使其沿自然裂缝、层理面和节理面等薄弱处而破裂的破碎机械。

从第一章可知此类破碎机适用于破碎含水量小于12%,抗压强度小于120MPa的物料。

被广泛地用于水凝、选煤、化工、电力、冶金等工业部门中,主要用来对石灰石、煤、焦炭、页岩、石膏、炉渣等中硬和软物料进行中、细破碎。

2.4.2类型

锤式破碎机结构类型很多,按回转轴数可分为单转子和双转子两类;按转子回转方向可分为可逆式和不可逆式两类;按锤头的排列方式,可分为单排式和多排式两种;按锤头在转子上的连接方式可分为固定锤式和活动锤式两类;按用途不同分为一般用途和特殊用途两类。

其中以单转子可逆式锤式破碎机运用最为广泛。

2.4.3工作原理

锤式破碎机利用电动机带动带有锤头的转子(转子由主轴、圆盘、销轴和锤子组成),使转子在破碎腔内高速旋转。

当物料从给料口进入机内,物料将受高速运动的锤子的打击、冲击、剪切、研磨作用而被粉碎。

破碎了的物料从锤头处获得动能,以高速向机壳内壁的破碎板(衬板)和筛板上冲击,同时还受到物料间相互撞击,而被第二次破碎。

被粉碎后的物料中小于筛孔尺寸的物料将通过筛板排出,大于筛孔尺寸的物料将继续被阻留在筛板上继续受到锤子的打击和研磨,直至最后能通过筛板排出机外。

2.5锤式破碎机的结构

2.5.1单转子不可逆式锤式破碎机的结构

如图2-2所示是单转子不可逆式锤式破碎机。

它由机壳1、转子2、篦条3、破碎板4和轴承5等部分组成。

 

图2-1单转子不可

1-机壳2-转子3-篦条4-破

机壳(上机壳和下机壳)用钢板焊接而成。

上部为进料口,机壳内部镶有高锰钢衬板,衬板磨损后可以更换。

机壳和轴之间的漏灰现象严重,特设有轴封。

机壳下部直接安放在混凝土基础上,并用地脚螺栓固定。

为了便于检修、调整和更换篦条,下机壳的前后两面均开有一个检修孔。

为了检修、更换锤头方便,两侧壁也对称地开有检修孔。

转子由主轴6,锤头架7组成。

锤架上用锤头销轴8将锤头9分排悬挂在锤架之间,

为了防止锤架和锤头和轴向串动,锤架两端用压紧锤盘10和锁紧螺母固定,转子支承在两个滚动轴承5上。

为了使转子在运动中储存一下的动能,避免破碎大块物料时,锤头的速度损失不致过大或减小电动机的尖峰负荷,在主轴一端还装有一个飞轮11。

2.5.2单转子可逆式锤式破碎机的结构不可逆式锤式破碎机具有一个严重的缺点,就是锤头极易一面磨损。

若要把锤头再翻转过来使用另一面,则必须停车把锤头卸下,再倒个装上,这样就消耗了很多的时间,浪费了人力,降低了生产效率。

而实际生产中,为了减少人力消耗,往往锤头只磨损一面就换成新的,这样就造成了很大的浪费。

为了克服这个缺点,在实际生产中大多都采用可逆式破碎机。

这种破碎机的转子可从正、反两方面回转。

当锤头某面磨损后,只要将电机反转就可以了。

这样就增加了锤头的使用寿命,提高了破碎机的作业率,增加了生产能力。

单转子可逆式锤式破碎机的结构与单转子不可逆式锤式破碎机相比较复杂,但基本结构也差不多。

单转子可逆式锤式破碎机的转子可以正、反两个方向旋转,所以它的主要零、部件都是对称布置的,进料口位于机器的正中上方。

其主轴上装有锤盘,每两个圆盘通过销轴悬挂锤头,主轴两端支承在滚动轴承上。

电动机通过联轴器直接带动转子回转。

2.6单转子可逆式锤式破碎机主要参数的设计计算

2.6.1主要结构参数的选择与计算

2.6.1.1转子的直径与长度

转子的直径一般根据给料块的尺寸来确定,通常转子直径D按下式计算

12

D(1.2:

1.5)Dmax12(2-1)

Dmax最大给料粒度

从第一章我们知道锤式破碎机主要用于对中等粒度的物料进行破碎,其破碎粒度为100~350。

因物料的形状、大小并不完全规则,为了使破碎机在工作时锤头处有尽可能大的动能,此处系数取5。

Dmax=200

则转子直径

D=1000

转子的长度由破碎机生产率的大小而定,其转子长度按下式计算

L=(0.7~1.5)D12(2-2)

取系数为0.8

则转子长度L=800

2.6.1.2进料口宽度与长度

锤式破碎机的进料口长度与转子长度相同,而进料口宽度B>2Dmax

Dma最大进料粒度

则进料口长度为800

进料口宽度B>400,取B=500

2.6.1.3排料口尺寸

锤式破碎机的出料口尺寸由篦条间隙来控制,而篦条间隙由产品粒度的大小决定。

中碎时,产品的粒度为间隙的15~31;粗碎时,产品的平均粒度为间隙的21~11.5。

在第一章里我们知道锤式破碎机主要用于对中等粒度的物料进行破碎。

则篦条间隙为39~65,为了保证物料破碎后的料度为13,这里取篦条间隙为25。

2.6.1.4锤头类型、材料及质量的选择锤头按其质量可分为重型、中型和小型三种,如图2-3所示。

重型锤头主要用在¢1000mm×800mm以上的锤式破碎机;中型锤头一般用在¢800mm×600mm和¢600mm×400mm的锤式破碎机上;轻型锤头主要用在小型破碎机上。

此类破碎机选用重型锤头。

abc

图2-2

锤头的材料通常有白口铸铁、含锰12%~14%的高锰钢和高锰低合金钢ZG30MnSiTi,也可在锤头表面焊一层3~4mm的硬合金。

因为锤头在破碎腔内直接与物料接触受冲击力较大,磨损也非常快,高锰低合金钢ZG30MnSiTi的综合性能较好,选用。

锤头的质量直接影响到破碎效果和能量消耗,一般取锤头质量为装入物料块最大质量的1.5(重型)~2(轻型)倍

xxxxx学院毕业设计(论文)

由公式=m3(2-3)

v

取m=17kg

2.6.2主要工作参数的设计计算

2.6.2.1转子转速的计算

锤式破碎机转子转速按所需要的圆周速度来计算,而锤头的圆周速度根据被破碎物料的性质破碎产品的料度、锤头的磨损、机器结构等因素来确定。

转子转速

6012

N=60r/min(2-4)

D

v转子回转速度,m/s;

D转子直径,m。

转子的圆周速度为18~70m/s。

一般中小型破碎机转速为750~1500r/min圆周速度为25~70m/s大型破碎机的转速为200~350r/s。

速度愈高,破碎后物料的粒度就愈小,锤头、衬板、篦条的磨损也越大,功率消耗也随之增加,对机器零部件的加工、安装精度要求也随之增高,所以在满足产品粒度要求的情况下,转子圆周速度应取较低的转速。

为达到所要求的生产率,取v=38/s

n=36.01x43x81=726r/min

2.6.2.2生产率计算

锤式破碎机的生产率与破碎机的规格、转速、出料篦条间隙宽度、给料粒度、给料状况及物料性质等因素有关。

由经验公式

12

Q=KDLρ12t/h(2-5)

Q生产率,t/h;

D,L转子的直径和长度,m;

ρ物料的堆密度,t/m3;

K经验系数。

破碎石灰石等中硬物料时,K=30~40,机器的规格较大时,

K取上限,机器规格较小时,取下限。

破碎煤时,

K=130~150

破碎石灰石等中等物料时

K=35,

则生产率Q=35Х1Х0.8Х1.6=44.8t/h

破碎煤时

3

K=140,ρ=0.7t/m3

则生产率Q=140Х1Х0.8Х0.7=78.4t/h

所以转子直径D=1000mm,转子长度L=800mm能,达到预计生产率,符合设计要求。

2.6.2.3电动机功率的计算

锤式破碎机功率消耗与很多因素有关,但主要取决于物料的性质、转子的圆周速度、破碎比和生产率。

由经验公式

Nd=K0D2LnKW12(2-6)

Nd电动机功率,KW;

D,L转子的直径和长度,m;

n转子转速,r/min;

K0经验系数。

对于大型锤式破碎机,K0=(0.15~0.2);中型破碎机,

K0=0.15;小型破碎机,K0=0.1。

这里K0取0.18

则Nd=0.18×12×0.8×726=104.54KW

查《机械零件设计手册》所选电动机参数如表2-1所示

型号

额定功率(KW)

额定电压(V

额定电流(A

同步转速(r/min)

效率(%)

功率因数COSφ

堵转转矩

堵转电流

最大转矩

量(k

─额定转矩

额定电流

─额定转矩

(k

g)

Y315

132380

M2-8

262

750

92

0.8

1

1.3

6.5

1.8

160

0

2.7主要零件设计及计算

2.7.1.主轴

主轴是支承转子的主要零件,主要承受冲击力。

因此选用45钢热处使其具有较高的强度和韧性。

其初设主轴草图如图2-4所示。

锤头在工作时,主轴在水平面上所受力非常小,这里主要考虑锤头工作时主轴在垂直面上的受力情况。

1)、暂不考虑锤头转动惯量时,主轴的强度校核

图2

情况一,当锤头处于如图2-5所示状态时主轴的强度校核

受力简图如下

图2

转矩

xxxxx学院毕业设计(论文)

由公式T=9549×W3得(2-7)n

132

T=9549×132≈1710N/m

726

六个锤头均匀分布在每一排的锤头销上,则每个锤头上所受的转矩相等,即

1710

T1=T2=T3=T4=T5=T6=6=285N/m

N/m

转矩图为

图2

每个锤头上的破碎力

T285

F1=F2=F3=F4=F5=F6=l=0.67=425.4N/m

弯矩MA=0

M1=0.297F1=0.297×425=127.5N/m

M2=0.424F2=0.424×425=178.2N/m

M3=0.551F3=0.551×425=238N/m

M4=0.677F4=0.677×425=289N/m

M5=0.804F5=0.804×425=340N/m

M6=0.931F6=0.931×425=395.25N/m

弯矩图为

MxzN/m

(2-8)

(2-9)

主轴所选材料为45钢,有

查机械设计第

16章

1b=55,

0b=95

当量弯矩

4

由公式M,=M2(T)

4

1bα=

0b

α=0.58

2222

M1,=M12(T1)=127.52(0.58285)=208.

76N/m

2222

M,2=M22(T2)=178.52(0.58285)=243

.5N/m

M,3=M23(T2)=238(0.58285)=289.7

8N/m

M4=M24(T2)=289(0.58285)=332.9

N/m

2222

M5=M5(T2)=340(0.58285)=378.0

5N/m

M,6=M62(T2)=395.252=395.25N/m

当量弯矩图为

N/m

情况二,当锤头处于图2-10所示状态时主轴的强度校核

图2

`受力简图如下

转矩

由公式

图2-

3

T=9549×W

n

(2-10)

132

T=9549×132

726

≈1710N/m

六个锤头均匀分布在每一排的锤头销上,则每个锤头上所受的转矩相等,即

1710

T1=T2=T3=T4=T5=T6=6=285N/m

转矩图为

每个锤头上的破碎力

图2

F1=F2=F3=F4=F5=F6

T=285=425.4N/m

l0.67

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 学科竞赛

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1