一次函数提高水平经典习题.docx
《一次函数提高水平经典习题.docx》由会员分享,可在线阅读,更多相关《一次函数提高水平经典习题.docx(14页珍藏版)》请在冰豆网上搜索。
一次函数提高水平经典习题
一次函数提高水平经典习题
1.(江苏苏州,7,3分)若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是( )
A.
2
B.
﹣2
C.
1
D.
﹣1
2.(年广西玉林市,7,3)一次函数y=mx+∣m-1∣的图象过点(0,2)且y随x的增大而增大,则m=()
A.-1B.3C.1D.-1或3
3.(四川内江,7,3分)函数y=
+
的图象在()
A.第一象限B.第一、三象限C.第二象限 D.第二、四象限
4.(山东省潍坊市,11,3)11、若直线
与直线
的交点在第三象限,则
的取值范围是()
A.
B.
C.
或
D.
6.(黑龙江省绥化市,19,3分)甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系如图所示,请你根据图像判断,下列说法正确的是()
A.甲队率先到达终点B.甲队比乙队多走了200米
C.乙队比甲队少用0.2分钟D.比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的速度大
7.(山东莱芜,9,3分)下列四幅图像近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序
①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)
②向锥形瓶中匀速注水(水面的高度与注水时间的关系)
③将常温下的温度计插入一杯热水中(温度计的读书与时间的关系)
④一杯越来越凉的水(水温与时间的关系)
A.①②④③B.③④②①C.①④②③D.③②④①
P
8.(四川省巴中市,7,3)如图2,点P是等
边△ABC的边上的一个作匀速运动的动点,其
由点A开始沿AB边运动到B再沿BC边运动
图2
到C为止,设运动时间为t,△ACP的面积为
D
S,S与t的大致图象是()
9.(呼和浩特,7,3分)下面四条直线,其中直线上每个点的坐标都是二元一次方程x–2y=2的解的是
ABCD
10.(黔东南州,9)如图,是直线
的图象,点P(2,
)在该直线的上方,则
的取值范围是()
A、
>-3B、
>-1C、
>0D、
<3
11.(贵州六盘水,9,3分)图2是邻居张大爷去公园锻炼及原路返回时离家的距离y(千米)与时间t(分钟)之间的函数图像,根据图像信息,下列说法正确的是()
A.张大爷去时用的时间省于回家的时间
B.张大爷在公园锻炼了40分钟
C.张大爷去时走上坡路,回家时走下坡路
D.张大爷去时的速度比回家时的速度慢
12.(湖北武汉,11,3分)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:
①a=8;②b=92;③c=123.其中正确的是【】
A.①②③B.仅有①②C.仅有①③D.仅有②③
13.(湖南益阳,8,4分)一个标准大气压下,能反映水在均匀加热过程中,水的温度(T)随加热时间(t)变化的函数图象大致是( )
AB.C.D.
14.(四川省资阳市,7,3分)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是
C
(第7题图)
15.(浙江省嘉兴市,10,4分)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B一D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为x,AP长为y,则y关于x的函数图象大致是()
16(·湖北省恩施市,题号15分值4)如图6,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式0<kx+b<
的解集为________.
17.(湖南衡阳市,18,3)如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,﹣2),则kb= .
18.(河南,19,9分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离
(千米)与
(时间)之间的函数关系图像
(1)求甲从B地返回A地的过程中,
与
之间的函数关系式,并写出自变量
的取值范围;
(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?
19.(湖北咸宁,22,10分)某景区的旅游线路如图1所示,其中A为入口,B,C,D为风景点,E为三岔路的交汇点,图1中所给数据为相应两点间的路程(单位:
km).甲游客以一定的速度沿线路“A→D→C→E→A”步行游览,在每个景点逗留的时间相同,当他回到A处时,共用去3h.甲步行的路程s(km)与游览时间t(h)之间的部分函数图象如图2所示.
图1
(1)求甲在每个景点逗留的时间,并补全图象;
(2)求C,E两点间的路程;
(3)乙游客与甲同时从A处出发,打算游完三个景点后回到A处,两人相约先到者在A处等候,等候时间不超过10分钟.如果乙的步行速度为3km/h,在每个景点逗留的时间与甲相同,他们的约定能否实现?
请说明理由.
20.(吉林省,第18题、5分.)在如图所示的三个函数图像中,有两个函数图像能近似地刻画如下a、b两个情境:
情境a:
小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;
情境b:
小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.
(1)情境a,b所对应的函数图像分别为_______,______.(填写序号)
(2)请你为剩下的函数图像写出一个适合的情境.
21.(浙江省衢州,22,10分)在社会主义新农村建设中,衢州某乡镇决定对A,B两村之间的公路进行改造,并由甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:
(1)乙工程队每天修公路多少米?
(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.
(3)若该工程由甲、乙两工程队一直合作施工,需几天完成?
22.(浙江省义乌市,22,10分)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小
时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家
的路程y(km)与小明离家时间x(h)的函数图象.已知妈
妈驾车的速度是小明骑车速度的3倍.
(1)求小明骑车的速度和在甲地游玩的时间;
(2)小明从家出发多少小时后被妈妈追上?
此时离家多远?
(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.
10
23.(湖北随州,24,12分)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动。
快车离乙地的路程
(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示。
慢车离乙地的路程
(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示。
根据图象进行以下研究。
解读信息:
(1)甲、乙两地之间的距离为_________km;
(2)线段AB的解析式为___________________________;
线段OC的解析式为____________________________;
问题解决:
(3)设快、慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数的图象。
24.(·湖北省恩施市,题号22分值8)小丁每天从报社以每份0.5元买进报纸200份,然后以每份元卖给读者,卖不完,当天可退回,但只按0.2退给,如果平均卖出x,纯收入为y
(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);
(2)如果每月30天计算,至少要买多少才能保证每月收入不低于2000元?
25.(江苏省淮安市,26,10分)国家和地方政府为了提高农民种粮的积极性,每亩地每年发放种粮补贴120元.种粮大户老王今年种了l50亩地,计划明年再承租50~150亩土地种粮以增加收入.考虑各种因素,预计明年每亩种粮成本y(元)与种粮面积x(亩)之间的函数关系如图所示:
(1)今年老王种粮可获得补贴多少元?
(2)根据图象,求y与x之间的函数关系式;
(3)若明年每亩的售粮收入能达到2140元,求老王明年种粮总收入W(元)与种粮面积x(亩)之间的函数关系式.当种粮面积为多少亩时,总收入最高?
并求出最高总收入.
26.(贵州遵义,25,分)为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.
(1)根据图象,阶梯电价方案分为三个档次,填写下表:
档次
第一档
第二档
第三档
每月用电量x(度)
0<x≤140
140<x≤230
x>230
(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;
(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.
27.(黑龙江省绥化市,25,8分)星期天8:
00~8:
30,燃气公司给平安加气站的储气罐注入天然气,注完气之后,一位工作人员以每车20米3的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(米3)与时间x(小时)的函数关系如图所示.
⑴8:
00~8:
30,燃气公司向储气罐注入了米3的天然气;
⑵当x≥8.5时,求储气罐中的储气量y(米3)与时间x(小时)的函数解析式;
⑶正在排队等候的第20辆车加完后,储气罐内还有天然气米3,这第20辆车在当天9:
00之前能加完气吗?
请说明理由.
28.(广安中考试题第22题,8分)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑。
经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需8万元。
(1)求购买1块电子白板和一台笔记本电脑各需多少元?
(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的资金不超过2700000元,并且购买笔记本电脑的台数不超过电子白板数量的3倍。
该校有哪几种购买方案?
(3)上面的哪种购买方案最省钱?
按最省钱方案购买需要多少钱?
29.(吉林省,第24题、7分.)如图1,A,B,C为三个超市,在A通往C的道路(粗实线部分)上有一D点,D与B有道路(细实线部分)相通.A与D,D与C,D与B之间的路程分别为25km,10km,5km.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H.设H到A的路程为xkm.这辆货车每天行驶的路程为ykm.
(1)用含x的代数式填空:
当0≤x≤25时,货车从H到A往返1次的路程为2xkm.
货车从H到B往返1次的路程为_______km.
货车从H到C往返2次的路程为_______km.
这辆货车每天行驶的路程y=__________.
当25(2)请在图2中画出y与x(0≤x≤35)的函数图像;
(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?
30.(四川攀枝花,20,8分)(8分)煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划。
某煤矿现有1000吨煤炭要全部运往A、B两厂,通过了解获得A、B两厂的有关信息如下表(表中运费栏“元/
”表示:
每吨煤炭运送一千米所需的费用):
厂别
运费(元/
)
路程(
)
需求量(
)
A
0.45
200
不超过600
B
150
不超过800
(1)写出总运费
(元)与运往厂的煤炭量
(
)之间的函数关系式,并写出自变量的取值范围;
(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费(可用含
的代数式表示)
31.(湖北黄石,23,8分)某楼盘一楼是车库(暂不出售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:
第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:
方案一:
购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).
方案二:
购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)
⑴请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数解析式.
⑵小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?
⑶有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?
请用具体数据阐明你的看法.