步步高一轮复习第四章第4课时.docx

上传人:b****5 文档编号:2862721 上传时间:2022-11-16 格式:DOCX 页数:18 大小:1.77MB
下载 相关 举报
步步高一轮复习第四章第4课时.docx_第1页
第1页 / 共18页
步步高一轮复习第四章第4课时.docx_第2页
第2页 / 共18页
步步高一轮复习第四章第4课时.docx_第3页
第3页 / 共18页
步步高一轮复习第四章第4课时.docx_第4页
第4页 / 共18页
步步高一轮复习第四章第4课时.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

步步高一轮复习第四章第4课时.docx

《步步高一轮复习第四章第4课时.docx》由会员分享,可在线阅读,更多相关《步步高一轮复习第四章第4课时.docx(18页珍藏版)》请在冰豆网上搜索。

步步高一轮复习第四章第4课时.docx

步步高一轮复习第四章第4课时

第4课时 万有引力与航天

考纲解读

1.掌握万有引力定律的内容、公式及应用.2.理解环绕速度的含义并会求解.3.了解第二和第三宇宙速度.

考点一 天体质量和密度的计算

1.解决天体(卫星)运动问题的基本思路

(1)天体运动的向心力来源于天体之间的万有引力,即

G=man=m=mω2r=m

(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G=mg(g表示天体表面的重力加速度).

2.天体质量和密度的计算

(1)利用天体表面的重力加速度g和天体半径R.

由于G=mg,故天体质量M=,

天体密度ρ===.

(2)通过观察卫星绕天体做匀速圆周运动的周期T和轨道半径r.

①由万有引力等于向心力,即G=mr,得出中心天体质量M=;

②若已知天体半径R,则天体的平均密度

ρ===;

③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r等于天体半径R,则天体密度ρ=.可见,只要测出卫星环绕天体表面运动的周期T,就可估算出中心天体的密度.

例1

 1798年,英国物理学家卡文迪许测出万有引力常量G,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G,地球表面处的重力加速度g,地球半径R,地球上一个昼夜的时间T1(地球自转周期),一年的时间T2(地球公转周期),地球中心到月球中心的距离L1,地球中心到太阳中心的距离L2.你能计算出(  )

A.地球的质量m地=

B.太阳的质量m太=

C.月球的质量m月=

D.可求月球、地球及太阳的密度

解析 对地球表面的一个物体m0来说,应有m0g=,所以地球质量m地=,选项A正确.对地球绕太阳运动来说,有=m地L2,则m太=,B项正确.对月球绕地球运动来说,能求地球的质量,不知道月球的相关参量及月球的卫星的运动参量,无法求出它的质量和密度,C、D项错误.

答案 AB

变式题组

1.[天体质量的估算](2013·大纲全国·18)“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200km的圆形轨道上运行,运行周期为127分钟.已知引力常量G=6.67×10-11N·m2/kg2,月球的半径为1.74×103km.利用以上数据估算月球的质量约为(  )

A.8.1×1010kgB.7.4×1013kg

C.5.4×1019kgD.7.4×1022kg

答案 D

解析 由G=m(R+h)()2,解得月球的质量M=4π2(R+h)3/GT2,代入数据得:

M=7.4×1022kg,选项D正确.

2.[天体密度的计算]“嫦娥三号”探测器已于2013年12月2日1时30分,在西昌卫星发射中心成功发射.“嫦娥三号”携带“玉免号”月球车首次实现月球软着陆和月面巡视勘察,并开展月表形貌与地质构造调查等科学探测.已知月球半径为R0,月球表面处重力加速度为g0,地球和月球的半径之比为=4,表面重力加速度之比为=6,则地球和月球的密度之比为(  )

A.B.

C.4D.6

答案 B

解析 设星球的密度为ρ,由G=m′g得GM=gR2,ρ==,联立解得:

ρ=,则:

=,将=4,=6代入上式,解得:

=,选项B正确.

      估算天体质量和密度时应注意的问题

(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.

(2)区别天体半径R和卫星轨道半径r,只有在天体表面附近的卫星才有r≈R;计算天体密度时,V=πR3中的R只能是中心天体的半径.

考点二 卫星运行参量的比较与计算

1.卫星的各物理量随轨道半径变化的规律

2.极地卫星和近地卫星

(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.

(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9km/s.

(3)两种卫星的轨道平面一定通过地球的球心.

例2

 (2013·广东·14)如图1,甲、乙两颗卫星以相同的轨道半径分别绕质量为M和2M的行星做匀速圆周运动,下列说法正确的是(  )

图1

A.甲的向心加速度比乙的小

B.甲的运行周期比乙的小

C.甲的角速度比乙的大

D.甲的线速度比乙的大

答案 A

解析 由万有引力提供向心力得G=m=mω2r=ma=mr,变形得:

a=,v=,ω=,T=2π,只有周期T和M成减函数关系,而a、v、ω和M成增函数关系,故选A.

变式题组

3.[卫星运行参量的比较](2013·海南·5)“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍.下列说法正确的是(  )

A.静止轨道卫星的周期约为中轨道卫星的2倍

B.静止轨道卫星的线速度大小约为中轨道卫星的2倍

C.静止轨道卫星的角速度大小约为中轨道卫星的

D.静止轨道卫星的向心加速度大小约为中轨道卫星的

答案 A

4.[同步卫星问题的有关分析]已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G.有关同步卫星,下列表述正确的是(  )

A.卫星距地面的高度为

B.卫星的运行速度小于第一宇宙速度

C.卫星运行时受到的向心力大小为G

D.卫星运行的向心加速度小于地球表面的重力加速度

答案 BD

解析 天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀速圆周运动,即F万=F向=m=.当卫星在地表运行时,F万==mg(R为地球半径),设同步卫星离地面高度为h,则F万==F向=ma向

        同步卫星的六个“一定”

考点三 卫星变轨问题分析

1.当卫星的速度突然增大时,G

2.当卫星的速度突然减小时,G>m,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v=可知其运行速度比原轨道时增大.

卫星的发射和回收就是利用这一原理.

例3

 在完成各项任务后,“神舟十号”飞船于2013年6月26日回归地球.如图2所示,飞船在返回地面时,要在P点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q为轨道Ⅱ上的一点,M为轨道Ⅰ上的另一点,关于“神舟十号”的运动,下列说法中正确的有(  )

图2

A.飞船在轨道Ⅱ上经过P的速度小于经过Q的速度

B.飞船在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过M的速度

C.飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期

D.飞船在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过M的加速度

解析 由开普勒行星运动定律可知选项A正确;飞船在轨道Ⅰ上做匀速圆周运动,故飞船经过P、M两点时的速率相等,由于飞船在P点进入轨道Ⅱ时相对于轨道Ⅰ做向心运动,可知飞船在轨道Ⅱ上P点速度小于轨道Ⅰ上P点速度,故选项B正确;根据开普勒第三定律可知,飞船在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,选项C错误;根据牛顿第二定律可知,飞船在轨道Ⅱ上经过P的加速度与在轨道Ⅰ上经过M的加速度大小相等,选项D错误.

答案 AB

递进题组

5.[变轨中运行参量的比较]2013年12月2日,我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图3所示,地面发射后奔向月球,在P点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q为轨道Ⅱ上的近月点.下列关于“嫦娥三号”的运动,正确的说法是(  )

图3

A.发射速度一定大于7.9km/s

B.在轨道Ⅱ上从P到Q的过程中速率不断增大

C.在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过P的速度

D.在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过P的加速度

答案 ABC

解析 “嫦娥三号”探测器的发射速度一定大于7.9km/s,A正确.在轨道Ⅱ上从P到Q的过程中速率不断增大,选项B正确.“嫦娥三号”从轨道Ⅰ上运动到轨道Ⅱ上要减速,故在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过P的速度,选项C正确.在轨道Ⅱ上经过P的加速度等于在轨道Ⅰ上经过P的加速度,D错.

6.[变轨中运行参量的比较]如图4所示,搭载着“嫦娥二号”卫星的长征三号丙运载火箭在西昌卫星发射中心点火发射,卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入距离月球表面100km、周期为118min的工作轨道,开始对月球进行探测,则(  )

图4

A.卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小

B.卫星在轨道Ⅲ上经过P点的速度比在轨道Ⅰ上经过P点时的大

C.卫星在轨道Ⅲ上运行周期比在轨道Ⅰ上短

D.卫星在轨道Ⅲ上的运行周期比在轨道Ⅰ上长

答案 AC

考点四 宇宙速度的理解与计算

1.第一宇宙速度又叫环绕速度.

推导过程为:

由mg==得:

v1===7.9km/s.

2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度.

3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度.

注意 

(1)两种周期——自转周期和公转周期的不同.

(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度.

(3)两个半径——天体半径R和卫星轨道半径r的不同.

(4)第二宇宙速度(脱离速度):

v2=11.2km/s,使物体挣脱地球引力束缚的最小发射速度.

(5)第三宇宙速度(逃逸速度):

v3=16.7km/s,使物体挣脱太阳引力束缚的最小发射速度.

例4

 “伽利略”木星探测器,从1989年10月进入太空起,历经6年,行程37亿千米,终于到达木星周围.此后在t秒内绕木星运行N圈后,对木星及其卫星进行考察,最后坠入木星大气层烧毁.设这N圈都是绕木星在同一个圆周上运行,其运行速率为v,探测器上的照相机正对木星拍摄整个木星时的视角为θ(如图5所示),设木星为一球体.求:

图5

(1)木星探测器在上述圆形轨道上运行时的轨道半径;

(2)木星的第一宇宙速度.

答案 

(1) 

(2)

解析 

(1)设木星探测器在题述圆形轨道运行时,轨道半径为r,由v=

可得:

r=

由题意可知,T=

联立解得r=

(2)探测器在圆形轨道上运行时,万有引力提供向心力,

G=m.

设木星的第一宇宙速度为v0,有,G=m′

联立解得:

v0=v

由题意可知R=rsin,解得:

v0=.

变式题组

7.[第一宇宙速度的理解与计算]某人在一星球表面上以速度v0竖直上抛一物体,经过时间t后物体落回手中.已知星球半径为R,那么沿星球表面将物体抛出,要使物体不再落回星球表面,抛射速度至少为(  )

A.B.

C.D.

答案 B

解析 要使物体不再落回星球表面,抛射速度必须达到星球的第一宇宙速度,满足v==,而由竖直上抛规律知v0=gt,所以v=,B对.

8.[宇宙速度的理解与计算]2011年中俄联合实施探测火星计划,由中国负责研制的“萤火一号”火星探测器与俄罗斯研制的“福布斯—土壤”火星探测器一起由俄罗斯“天顶”运载火箭发射前往火星.已知火星的质量约为地球质量的,火星的半径约为地球半径的.下列关于火星探测器的说法中正确的是(  )

A.发射速度只要大于第一宇宙速度即可

B.发射速度只有达到第三宇宙速度才可以

C.发射速度应大于第二宇宙速度而小于第三宇宙速度

D.火星探测器环绕火星运行的最大速度为地球第一宇宙速度的

答案 CD

解析 根据三个宇宙速度的意义,可知选项A、B错误

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 调查报告

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1