论文.docx

上传人:b****5 文档编号:2826790 上传时间:2022-11-15 格式:DOCX 页数:11 大小:22.86KB
下载 相关 举报
论文.docx_第1页
第1页 / 共11页
论文.docx_第2页
第2页 / 共11页
论文.docx_第3页
第3页 / 共11页
论文.docx_第4页
第4页 / 共11页
论文.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

论文.docx

《论文.docx》由会员分享,可在线阅读,更多相关《论文.docx(11页珍藏版)》请在冰豆网上搜索。

论文.docx

论文

1DefiningQuestions

Ascientificfieldisbestdefinedbythecentralquestionitstudies.ThefieldofMachineLearningseekstoanswerthequestion

“Howcanwebuildcomputersystemsthatautomaticallyimprovewithexperience,andwhatarethefundamentallawsthatgovernalllearningprocesses?

Thisquestioncoversabroadrangeoflearningtasks,suchashowtodesignautonomousmobilerobotsthatlearntonavigatefromtheirownexperience,howtodataminehistoricalmedicalrecordstolearnwhichfuturepatientswillrespondbesttowhichtreatments,andhowtobuildsearchenginesthatautomaticallycustomizetotheiruser’sinterests.Tobemoreprecise,wesaythatamachinelearnswithrespecttoaparticulartaskT,performancemetricP,andtypeofexperienceE,ifthesystemreliablyimprovesitsperformancePattaskT,followingexperienceE.

DependingonhowwespecifyT,P,andE,thelearningtaskmightalsobecalledbynamessuchasdatamining,autonomousdiscovery,databaseupdating,programmingbyexample,etc.

MachineLearningisanaturaloutgrowthoftheintersectionofComputerScienceandStatistics.WemightsaythedefiningquestionofComputerScienceis“Howcanwebuildmachinesthatsolveproblems,andwhichproblemsareinherentlytractable/intractable?

”ThequestionthatlargelydefinesStatisticsis“Whatcanbeinferredfromdataplusasetofmodelingassumptions,withwhatreliability?

”ThedefiningquestionforMachineLearningbuildsonboth,butitisadistinctquestion.WhereasComputerSciencehasfocusedprimarilyonhowtomanuallyprogramcomputers,MachineLearningfocusesonthequestionof

howtogetcomputerstoprogramthemselves(fromexperienceplussomeinitialstructure).WhereasStatisticshasfocusedprimarilyonwhatconclusionscanbeinferredfromdata,MachineLearningincorporatesadditionalquestionsaboutwhatcomputationalarchitecturesandalgorithmscanbeusedtomosteffectivelycapture,store,index,retrieveandmergethesedata,howmultiplelearningsubtaskscanbeorchestratedinalargersystem,andquestionsofcomputationaltractability.

AthirdfieldwhosedefiningquestioniscloselyrelatedtoMachineLearningisthestudyofhumanandanimallearninginPsychology,Neuroscience,andrelatedfields.Thequestionsofhowcomputerscanlearnandhowanimalslearnmostprobablyhavehighlyintertwinedanswers.Todate,however,theinsightsMachineLearninghasgainedfromstudiesofHumanLearningaremuchweakerthanthoseithasgainedfromStatisticsandComputerScience,dueprimarilytotheweakstateofourunderstandingofHumanLearning.Nevertheless,thesynergybetweenstudiesofmachineandhumanlearningisgrowing,withmachinelearningalgorithmssuchastemporaldifferencelearningnowbeingsuggestedasexplanationsforneuralsignalsobservedinlearninganimals.OverthecomingyearsitisreasonabletoexpectthesynergybetweenstudiesofHumanLearningandMachineLearningtogrowsubstantially,astheyarecloseneighborsinthelandscapeofcorescientificquestions.

Otherfields,frombiologytoecomonicstocontroltheoryalsohaveacoreinterestinthequestionofhowsystemscanautomaticallyadaptoroptimizetotheirenvironment,andmachinelearningwilllikelyhaveanincreasingexchangeofideaswiththesefieldsoverthecomingyears.Forexample,economicsisinterestedinquestionssuchashowdistributedcollectionsofself-interestedindividualsmayformasystem(market)thatlearnspricesleadingtopareto-optimalallocationsforthegreatestcommongood.Andcontroltheory,especiallyadaptivecontroltheory,isinterestedinquestionssuchashowaservo-controlsystemcanimproveitscontrolstrategythroughexperience.Interestingly,themathematicalmodelsforadaptationintheseotherfieldsaresomewhatdifferentfromthosecommonlyusedinmachinelearning,suggestingsignificantpotentialforcross-fertilizationofmodelsandtheories.

ThefollowingsectionsdiscussthestateoftheartofMachineLearning,asampleofsuccessfulapplica-tions,andasampleofopenresearchquestions.

2StateofMachineLearning

Herewedescribesomeoftheprogressinmachinelearning,aswellasopenresearchquestions.

2.1ApplicationSuccesses

OnemeasureofprogressinMachineLearningisitssignificantreal-worldapplications,suchasthoselistedbelow.Althoughwenowtakemanyoftheseapplicationsforgranted,itisworthnotingthataslateas1985therewerealmostnocommercialapplicationsofmachinelearning.

*Speechrecognition.Currentlyavailablecommercialsystemsforspeechrecognitionallusemachinelearninginonefashionoranothertotrainthesystemtorecognizespeech.Thereasonissimple:

thespeechrecognitionaccuracyisgreaterifonetrainsthesystem,thanifoneattemptstoprogramitbyhand.Infact,manycommercialspee

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 辩护词

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1