555时基电路应用和工作原理.docx
《555时基电路应用和工作原理.docx》由会员分享,可在线阅读,更多相关《555时基电路应用和工作原理.docx(12页珍藏版)》请在冰豆网上搜索。
555时基电路应用和工作原理
555时基电路应用和工作原理
时间:
2009-12-2815:
07:
12来源:
作者:
1 555时基电路的特点
555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。
但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。
此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。
由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。
图1555集成电路内部结构图
555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。
其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。
图2555集成电路封装图
我们也可以把555电路等效成一个带放电开关的R-S触发器,如图3(A)所示,这个特殊的触发器有两个输入端:
阈值端(TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位端S,要求低电平,有一个输出端Vo,Vo可等效成触发器的Q端,放电端(DIS)可看成是由内部放电开关控制的一个接点,由触发器的Q端控制:
Q=1时DIS端接地,Q=0时DIS端悬空。
另外还有复位端MR,控制电压端Vc,电源端VDD和
地端GND。
这个特殊的触发器有两个特点:
(1)两个输入端的触发电平要求一高一低,置零端R即阈值端(TH)要求高电平,而置位端s即触发端(TR)则要求低电乎;
(2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当Vc端不接控制电压时,对TH(R)端来讲,>2/3VDD是高电平1,<2/3VDD是低电平0:
而对TR(S)端来讲,>1/3VDD是高电平1,<1/3VDD是低电平0。
如果在控制端(Vc)上控制电压Vc时,这时上触发电平就变成Vc值,下触发电平就变成1/2Vc值,可 见改变控制端的控制电压值就可以改变上下触发电平值。
它的功能表见图3(B)所示。
图3555电路等效R—S触发器
555集成电路有双极型和CMOS型两种。
CMOS型的优点是功耗低、电源电压低、输入阻抗高,但输出功率较小,输出驱动电流只有几毫安。
双极型的优点是输出功率大,驱动电流达200毫安,其他指标则不如CMOS型的。
555的应用电路很多,只要改变555集成电路的外部附加电路,就可以构成几百种应用电路,大体上可分为555单稳、555双稳及555无稳(即振荡器)三类。
2 555单稳电路
单稳电路有一个稳态和一个暂稳态,是利用电容的充放电形成暂稳态的,因此它的输入端都带有定时电阻和定时电容,常见的555单稳电路有两种:
1)人工启动型
将555电路的6、2脚并接起来接在RC定时电路上,在定时电容CT,两端接按钮开关SB,就成为人工启动型555单稳电路,如图4(a)所示,用等效触发器替代555,并略去与单稳工作无关的部分后见图4(b)所示,下面分析它的工作原理:
稳态:
接上电源后,电容CT很快充电到VDD,从图4(b)看到,触发器输入R=1,S=1,从功能表看到输出Vo=0,这是它的稳态。
暂稳态:
按下开关SB,CT上电荷很快放到零,相当于触发器输入R=0,S=0,输出立即翻转成Vo=l,暂稳态开始。
开关放开后,电源又向CT充电,经过时间TD后,CT上电压上升到>2/3VDD时,输出又翻转成Vo=O,暂稳态结束。
TD就是单稳电路的定时时间或延时时间,它和定时电阻RT和定时电容CT的值有关:
TD=1.1RTCT。
图4人工启动型555单稳电路
2)脉冲启动型
将555电路的6、7脚并接起来接在定时电容CT上,用2脚作输入就成为脉冲启动型单稳电路,如图5(a)所示,电路的2脚平时接高电平,当输入接低电平或输入负脉冲时才启动电路,用等效触发器替代555后见图56)所示,下面分析它的工作原理:
稳态:
接上电源后,R=1,S=1,输出Vo=0,DIS端接地,CT上的电压为0即R=0,输出仍保持Vo=0,这是它的稳态。
暂稳态:
输入负脉冲后,输入S=0,输出立即翻转成Vo=1,DIS端开路,电源通过RT向CT充电,暂稳态开始。
经过时间TD后,CT上电压上升到>2/3VDD时,输入又成为R=1,S=1,这时负脉冲已经消失,输出又翻转成Vo=0,暂稳态结束。
这时内部放电开关接通,DIS端接地,CT上电荷很快放到零,为下一次定时控制作准备。
电路的定时时间TD=1.1RTCT。
这两种单稳电路常用作定时延时控制。
图5脉冲启动型单稳电路
3 555双稳电路
常见的555双稳电路有两种:
1)R-S触发器型双稳
将555电路的6、2脚作为两个控制输入端,7端不用,就成为一个R-S触发器。
注意两个输入端的触发电平和阈值电压不同,如图6(a)所示,有时可能只有一个控制端,这时另外一个控制端要设法接死,根据电路要求可以把R端接到电源端,如图6(b)所示,也可以把S接地,用R端作输入。
有两个输入端的双稳电路常用作电机调速、电源上下限告警等用途。
有一个输入端的双稳电路作为单端比较器用于各种检测电路。
图6555构成R-S触发器
2)施密特触发器型双稳
将555电路的6、2脚并接起来接成只有一个输入端的触发器,如图7(a)所示,这个触发器输出电压和输入电压的关系是一个长方形的回线形,如图7(b)所示,从曲线可知,当输入V1=0时输出Vo=1,当输入电压从0上升到>2/3VDD后,Vo翻转成0,当输入电压从最高值下降到<1/3VDD后,Vo又翻转成1。
由于它的输入有两个不同的阈值电压,所以,这种电路常用于电子开关,各种控制电路、波形的变换和整形,如图8所示。
图7555构成施密特触发器
图8波形的变换和整形
4555无稳电路(振荡器)
由555定时器构成的多谐振荡器如图9(a)所示,其工作波形见图9(b)。
接通电源后,电源VDD通过R1和R2对电容C充电,当Uc<1/3VDD时,振荡器输出Vo=1,放电管截止。
当Uc充电到≥2/3VDD后,振荡器输出Vo翻转成0,此时放电管导通,使放电端(DIS)接地,电容C通过R2对地放电,使Uc下降。
当Uc下降到≤1/3VDD后,振荡器输出Vo又翻转成1,此时放电管又截止,使放电端(DIS)不接地,电源VDD通过R1和R2又对电容C充电,又使Uc从1/3VDD上升到2/3VDD,触发器又发生翻转,如此周而复始,从而在输出端Vo得到连续变化的振荡脉冲波形。
脉冲宽度TL≈0.7R2C,由电容C放电时间决定;TH=0.7(R1+R2)C,由电容C充电时间决定,脉冲周期T≈TH+TL。
图9555构成多谐振荡器
上面仅讨论了由555定时器构成的几种典型应用实例。
实际上,由于555定时器灵敏度高,功能灵活,因而在电子电路中获得广泛应用。
555定时器
百科名片
555定时器是一种模拟和数字功能相结合的中规模集成器件。
一般用双极性工艺制作的称为555,用CMOS工艺制作的称为7555,除单定时器外,还有对应的双定时器556/7556。
555定时器的电源电压范围宽,可在4.5V~16V工作,7555可在3~18V工作,输出驱动电流约为200mA,因而其输出可与TTL、CMOS或者模拟电路电平兼容。
简介
555定时器
555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。
它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。
555定时器的内部电路框图和外引脚排列图分别如图2.9.1和图2.9.2所示。
它内部包括两个电压比较器,三个等值串联电阻,一个RS触发器,一个放电管T及功率输出级。
它提供两个基准电压VCC/3和2VCC/3
555定时器的功能主要由两个比较器决定。
两个比较器的输出电压控制RS触发器和放电管的状态。
在电源与地之间加上电压,当5脚悬空时,则电压比较器C1的同相输入端的电压为2VCC/3,C2的反相输入端的电压为VCC/3。
若触发输入端TR的电压小于VCC/3,则比较器C2的输出为0,可使RS触发器置1,使输出端OUT=1。
如果阈值输入端TH的电压大于2VCC/3,同时TR端的电压大于VCC/3,则C1的输出为0,C2的输出为1,可将RS触发器置0,使输出为0电平。
它的各个引脚功能如下:
1脚:
外接电源负端VSS或接地,一般情况下接地。
8脚:
外接电源VCC,双极型时基电路VCC的范围是4.5~16V,CMOS型时基电路VCC的范围为3~18V。
一般用5V。
3脚:
输出端Vo
2脚:
低触发端
6脚:
TH高触发端
4脚:
是直接清零端。
当端接低电平,则时基电路不工作,此时不论、TH处于何电平,时基电路输出为“0”,该端不用时应接高电平。
5脚:
VC为控制电压端。
若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF电容接地,以防引入干扰。
7脚:
放电端。
该端与放电管集电极相连,用做定时器时电容的放电。
在1脚接地,5脚未外接电压,两个比较器A1、A2基准电压分别为的情况下,555时基电路的功能表如表6—1示。
表6—1555定时器的功能表
清零端
高触发端TH
低触发端
Q
放电管T
功能
0
0
导通
直接清零
1
0
导通
置0
1
1
截止
置1
1
Q
不变
保持
发展
概述 是美国Signetics公司1972年研制的用于取代机械式定时器的中规模集成电路,因输入端设计有三个5kΩ的电阻而得名。
此电路后来竟风靡世界。
目前,流行的产品主要有4个:
BJT两个:
555,556(含有两个555);CMOS两个:
7555,7556(含有两个7555)。
555定时器可以说是模拟电路与数字电路结合的典范。
两个比较器C1和C2各有一个输入端连接到三个电阻R组成的分压器上,比较器的输出接到RS触发器上。
此外还有输出级和放电管。
输出级的驱动电流可达200mA。
比较器C1和C2的参考电压分别为UA和UB,根据C1和C2的另一个输入端——触发输入和阈值输入,可判断出RS触发器的输出状态。
当复位端为低电平时,RS触发器被强制复位。
若无需复位操作,复位端应接高电平。
编辑本段应用
555的应用:
555定时器
(1)构成施密特触发器,用于TTL系统的接口,整形电路或脉冲鉴幅等;
(2)构成多谐振荡器,组成信号产生电路;
如右图,
振荡周期:
T=0.7(R1+2R2)C
[1]
(3)构成单稳态触发器,用于定时延时整形及一些定时开关中。
555应用电路采用这3种方式中的1种或多种组合起来可以组成各种实用的电子电路,如定时器、分频器、脉冲信号发生器、元件参数和电路检测电路、玩具游戏机电路、音响告警电路、电源交换电路、频率变换电路、自动控制电路等。
实例
单稳态电路
前面介绍的双稳态触发器具有两个稳态的输出状态和,且两个状态始终相反。
而单稳态触发器只有一个稳态状态。
在未加触发信号之前,触发器处于稳定状态,经触发后,触发器由稳定状态翻转为暂稳状态,暂稳状态保持一段时间后,又会自动翻转回原来的稳定状态。
单稳态触发器一般用于延时和脉冲整形电路。
接通电源后,未加负脉冲,,而C充电,上升,当时,电路输出为低电平,放电管T导通,C快速放电,使=0。
这样,在加负脉冲前,为低电平,=0,这是电路的稳态。
在t=t0时刻负跳变(端电平小于),而=0(TH端电平小于),所以输出翻为高电平,T截止,C充电。
按指数规律上升。
t=t1时,负脉冲消失。
t=t2时上升到(此时TH端电平大于,端电平大于),又自动翻为低电平。
在这段时间电路处于暂稳态。
t>t2,T导通,C快速放电,电路又恢复到稳态。
由分析可得:
输出正脉冲宽度tW=1.1RC
注意:
图6—3(a)电路只能用窄负脉冲触发,即触发脉冲宽度ti必须小于tW
多谐振荡器
多谐振荡器又称为无稳态触发器,它没有稳定的输出状态,只有两个暂稳态。
在电路处于某一暂稳态后,经过一段时间可以自行触发翻转到另一暂稳态。
两个暂稳态自行相互转换而输出一系列矩形波。
多谐振荡器可用作方波发生器。
接通电源后,假定是高电平,则T截止,电容C充电。
充电回路是VCC—R1—R2—
C—地,按指数规律上升,当上升到时(TH、端电平大于),输出翻转为低电平。
是低电平,T导通,C放电,放电回路为C—R2—T—地,按指数规律下降,当下降到时(TH、端电平小于),输出翻转为高电平,放电管T截止,电容再次充电,如此周而复始,产生振荡,经分析可得
输出高电平时间
输出低电平时间
振荡周期
输出方波的占空比为
555定时器用于实际中的实例有:
能发出“叮、咚”声门铃的电路和旋光彩灯控制电路