视觉功能修复的基础理论与关键科学问题修正版.docx

上传人:b****5 文档编号:2801303 上传时间:2022-11-15 格式:DOCX 页数:18 大小:109KB
下载 相关 举报
视觉功能修复的基础理论与关键科学问题修正版.docx_第1页
第1页 / 共18页
视觉功能修复的基础理论与关键科学问题修正版.docx_第2页
第2页 / 共18页
视觉功能修复的基础理论与关键科学问题修正版.docx_第3页
第3页 / 共18页
视觉功能修复的基础理论与关键科学问题修正版.docx_第4页
第4页 / 共18页
视觉功能修复的基础理论与关键科学问题修正版.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

视觉功能修复的基础理论与关键科学问题修正版.docx

《视觉功能修复的基础理论与关键科学问题修正版.docx》由会员分享,可在线阅读,更多相关《视觉功能修复的基础理论与关键科学问题修正版.docx(18页珍藏版)》请在冰豆网上搜索。

视觉功能修复的基础理论与关键科学问题修正版.docx

视觉功能修复的基础理论与关键科学问题修正版

 

项目名称:

视觉功能修复的基础理论与关键科学问题

首席科学家:

任秋实上海交通大学

起止年限:

2005.12至2010.11

依托部门:

上海市科委教育部

一、研究内容

1、拟解决的关键科学问题

针对人民健康、国家经济和社会发展的需要,针对科学研究的基本问题,本项目提出“视觉功能修复的基础理论与关键科学问题”,围绕视觉功能修复这一前沿重大科学问题,采用多学科交叉、综合的研究方法,拟解决以下关键科学问题:

1)在神经科学方面,视网膜神经节细胞编码的基础理论研究:

视网膜神经信号处理及信息编码是视觉功能修复的基础理论问题,是视觉假体工作机理的生物学基础。

基本的问题是模式化电刺激激活模式化的神经元活动,而这些模式化的神经元活动产生视觉和精神活动的。

眼接受到的视觉信息很多,较为重要的视觉特征如亮度和颜色是在视网膜的神经节细胞编码,以动作电位形式经视神经传递给大脑。

当我们在视觉假体中人工刺激神经,诱发动作电位,期望产生有意义的视觉时,解决这些细胞如何编码信息是关键问题。

2)在信息科学方面,研究视网膜神经网络信息处理方法:

直接刺激视神经,旁路了具有信息处理的视网膜,这样就要人工实现视网膜本身的处理功能。

视网膜的输入是自然景观,输入信号均十分复杂。

采用常规的信息科学手段如图像分割、特征提取、图像理解、噪声滤除等手段,即使利用高性能的计算机,也难以实现输入图像到神经编码模式的实时转换。

为此建立视网膜神经网络复杂信息处理过程的仿生方法。

3)在生物物理方面,微电极阵列作用视神经束的基础理论:

视神经是以动作电位形式传递信息的,因此,在给定刺激下,有诱发动作电位的最小的刺激电流即阈值。

目前的研究都是基于实验,不能了解刺激脉冲幅度,波形,极性对视神经响应的影响。

由于是植入体,从降低功耗的角度,选择接近阈值的电流幅值也是必要的。

视神经有百万根,如何实现聚焦的选择性刺激和确定电极数量是微电极阵列作用于视神经束基础理论主要研究内容。

4)在材料科学方面,视觉假体的微光机电系统及生物相容性问题研究:

视觉假体是微小尺寸的植入体,集光、机、电技术于一体完成从光电转换、信息处理到视神经刺激等一系列的功能。

研究的问题包括建立光电耦合器件、视觉信号处理单元、刺激器之间高效的信息传输;实现视觉假体无线控制与供能;发展视觉假体制造的全新工艺。

只有解决这一关键问题,才能建立起真正有效的视觉假体,植入人体,修复视觉功能。

生物相容性是视觉假体最终植入生物体必须解决的问题。

视觉假体封装材料与微电极阵列直接与视神经细胞接触,这些材料对所接触组织及其周围环境产生的生化、电磁、热等作用干扰了细胞的正常生理环境和功能。

降低长时间植入生物体后封装与电极涂层材料可能引起的生物毒性,提高电极在细胞内外溶解液环境下的耐腐蚀性,并保持良好的导电性能,同时维持假体的固定,不得不研究微纳米尺度下电极的表面生物学问题,即本项目拟解决的第三个关键科学问题。

该问题的解决最终为视觉假体的封装、电极及其涂层提供生物相容性材料。

2、主要研究内容

围绕视觉功能修复这一问题,本项目进行相关信息科学、材料科学、神经科学和临床医学的基础理论研究,为视觉功能修复解决微光学、微电子、信息处理、临床手术等关键技术问题,研究内容涉及视觉过程的各个组成部分。

1)探索视觉假体相关的视觉神经编码规律

研究视觉神经信号处理与神经信息编码的机制,探讨单个神经节细胞、神经节细胞群在不同刺激条件下的脉冲时序信号和协同作用模式。

通过建立动物模型、临床实验模型,研究视网膜、视神经不同模式电刺激诱发的视皮层反应、视觉反应、视行为变化,深入探索视觉感知的电生理基础。

2)视网膜视觉信号处理机制及仿生模型的建立

基于视神经节细胞感受野特性建立视神经节细胞的感受野滤波器。

每一个感受野滤波器对应一个要刺激的视神经,由许多感受野滤波器形成自适应神经网络。

感受野滤波器的参数对常见的多种视神经节在生理范围内连续可调。

通过建立视网膜视觉信息处理的模型将多输入的视觉信息动态自适应地非线性映射到视神经刺激驱动脉冲阵列。

实现图像到视神经元群体脉冲刺激模式的实时、稳健、并具有自学习特点的转换和视觉功能修复中的视觉神经信息处理功能。

3)建立视觉假体与生物体之间相容的和谐接口

研究假体封装、微电极阵列及其涂层材料的生物相容性,分析各种涂层材料、电极形状对植入位点周围接触、非接触的生物体组织、细胞在生化、电磁、热等方面的影响,进而研究合适的封装、电极及涂层材料,降低由此引起的生物毒性、免疫排斥及腐蚀等负面效应,建立起视觉假体与生物体之间和谐的物质接口。

4)进行视觉功能修复相关的信息科学研究

眼与大脑皮层之间进行信息交换是视觉功能正常的基础。

视觉系统某些部分缺陷而引起视觉功能损伤,正是缘于其信息交换不能正常进行。

本项目研究生物微光机电系统,重建视觉信息的获取、处理与视神经信号的生成途径,重建起与生物体视皮层之间信息交换,从而修复视觉。

研究空间微小尺寸下白光处理的光学基础理论,探索在微小尺寸下综合二元光学、自适应光学与传统光学成像理论,实现自适应屈光成像系统的方法;选择硬件可实现的人工神经网络,模拟视网膜神经网络复杂的信息处理过程,实现视觉假体从数字图像空间到信息编码空间并行、快速、自学习及高鲁棒性的拓扑变换,从而产生有效的刺激模式;研究具有较高信号处理及传输速度、低功耗、高集成的信息传输手段与高效能量传输手段;针对视神经刺激的要求,研究新型微电极刺激阵列,提高电极密度,研究高性能数模转换模块,实现智能化的微电极阵列刺激器。

5)基于视神经刺激视觉假体的电刺激理论与建模

本研究主要是给电刺激视神经的实验和仪器实现提供理论支持。

内容包括建立能够描述刺激电极几何形状的模型;建立包括视神经组织体积导体模型(或组织电特性对电刺激的影响);利用神经动力学建模理论,建立一种新的神经模型,膜的电特性采用最新的生理实验数据成果,并考虑神经元的形态包括分支结构;数值计算电刺激作用下所建立的神经模型的响应。

分析各种电脉冲参数对视神经刺激点分布影响,确定电刺激阈值和选择性刺激的电脉冲极性和刺激方向。

建立基于视神经刺激的电极模式刺激仿真系统,确立心理物理实验所需求的最佳电极数目。

利用建立的组织模型计算刺激器使用时温度场的分布;利用神经模型,改变膜特性,了解视神经节细胞的编码机制。

6)研究实现视觉功能修复的视觉假体原型,开展临床实验研究

基于动物模型及其视觉电生理学、视觉行为学研究和理论预测,确定视神经不同部位电诱发阈值、动态范围,研究动物试验手术与人体临床视觉假体植入的手术方案,使视觉假体最终得以临床应用。

建立相关理论的验证方法,发展先进测试手段,通过视觉反应、视觉行为学研究,建立视觉假体的主、客观评估方案。

二、预期目标

1、总体目标

根据我国政府“帮助残疾人康复”的“十五计划”,按照国家发改委贯彻落实“十五”高技术产业发展规划,加快生物医学工程产业发展的要求,针对与人民健康息息相关的医疗康复问题,把握我国经济发展、技术发展的大好机遇,我们提出本项目—视觉功能修复的基础理论与关键科学问题研究,旨在相关基础科学的研究上取得突破,获得源头创新,并为国民经济、社会发展解决重大基础问题。

本项目围绕视觉功能修复所涉及的基本科学问题,探索真实世界物理空间与信息空间的关系,信息空间与器官功能、人体视觉的关系,为视觉功能修复提供理论基础和生物学模型。

本项目拟深入探索视觉机理,寻找视觉信息处理、编码与传输规律。

在视觉信号的并行数字化处理、适于植入的生物微光机电系统假体,无线射频、微电子芯片设计等方面获得重大技术突破,建立视觉人工植入体的研究、临床试验、测试评估平台。

动物模型与临床实验的结果为以上基础理论、关键科学问题的突破提供验证。

项目的完成将为盲人复明这一具有挑战性的科学前沿问题提供解决方案,给定模式的刺激产生模式化的视觉,刺激残余的视觉结构,完全丧失感觉的盲人可以产生视觉,有能力完成面部识别和陌生环境中行走,为人民健康提供保障。

2、五年预期目标

1)对解决国家重大需求的预期贡献

●视觉假体研究:

参与我国在这一领域研究的国际竞争,五年内,我们完成视觉功能修复假体的人体植入体所涉及的相关基础问题的研究,研制出视觉假体,并进行初步植入人体实验,对视网膜色素变性、老年黄斑变性等视网膜损伤导致的视觉功能缺陷取得显著的视觉修复效果。

●以视觉修复植入体研发为载体建立高端智能化医学仪器研发的模式和平台:

跟踪性的医学仪器研发是从仪器开始,根据国外以商品化的仪器再反复设计和实验验证;本项目的视觉假体研究面向对象,建立视神经刺激的模型开始,基于生理,心理物理仿真确定设计的理论依据,而且研究过程同时建立测试及临床评估平台,这为我国高端智能化人工器官研究提供面向对象的创新设计模式。

●推动生物医学工程学科发展:

我国生物医学工程学科在发展过程中,是以电子学为基础。

生物医学工程是一个多学科交叉学科,需要与其它学科不断融合。

本项目以视觉功能修复为核心任务,通过信息、材料、健康多学科交叉研究,会推动信息(电子、光学)、材料、神经生物学、临床眼科学的学科在生物医学工程学科的应用,有利于获得源头性创新成果,并形成机脑接口,Biomems等新的研究方向,增强在生物医学工程领域的国际竞争力,从理论与技术上同时为其它人工器官的研发提供参考知识。

同时大大提升我国科研团队创新能力、协作能力。

2)在理论、方法、技术等方面预期取得的进展、突破及其科学价值

在实现视觉假体的目标进展的过程中,我们将揭示视觉神经信息处理、编码传输新规律,在材料、微电子、信号处理等技术上取得突破,在理论、技术应用、临床验证等研究中取得重要成果:

●视觉理论、视觉信息编码的突破:

基于视网膜神经信息编码与传输的基础研究,建立复杂视觉刺激模式下,视网膜神经节细胞群体编码模式。

●视觉信号处理方面:

视网膜本身是一个生物并行计算机,传统的视网膜计算模型都是线性多层计算模式,基于视觉假体的研究我们在视网膜计算的非线性和实时性有所突破。

●视神经的电刺激理论与建模方面:

建立从激励,组织,神经纤维的视神经模型。

通过改变激励参数,确定刺激的阈值电流;通过分析组织模型,可以计算假体使用过程中的电场分布,定位刺激点与温度分布。

●关键微光机电技术、临床手术技术的突破:

在微光学系统仿生屈光成像系统、微电子系统仿生视网膜信息处理、编码与电脉冲生成、无线视频技术仿生神经信息与能量传输上取得重要创新,研究出具有自主知识产权的视觉假体,并在人体成功植入。

●技术平台建设:

通过本项目的研究,要初步建设两个技术平台,即“视觉信息编码和视觉计算技术平台”与“仿生微电子系统(BiomimeticMicroElectronicSystems)技术平台”新一代医学仪器的研究基地,为国内相关院、校之间的长期稳定合作与国际合作研究创造优越条件。

3)优秀人才培养

培养高水平学术人才:

形成一支思维活跃、创新能力强的基础研究队伍,造就一批在国内外相关领域有影响力,能与国际同行学术交流自如的学术带头人;培养博士、硕士200人;五年内发表SCI、EI收录学术论文200篇以上,力争在Nature或Science上发表论文1-2篇,出版专著5本以上,申请专利20项以上,争取取得国家自然科学奖。

三、研究方案

1、学术思路

本项目以修复盲人视觉功能为目标,以修复视觉功能的视觉假体为研究对象,在视觉机理与信息编码、视网膜神经元网络信号处理与视觉计算、基于视神经刺激的视觉假体理论建模和设计、生物相容性材料、生物微电子器件等方面做出原创性成果;应用这些理论方法,进行源头创新,开发具有我国自主知识产权和国际先进水平的、能使盲人产生有效视觉的人工器官,并在临床实验中得到应用。

在与视觉功能修复相关的科学与技术上,我国科研已有相当的研究基础,但是研究力量分散,没有针对明确、具体的任务目标,创新能力未得到充分发挥,在相关领域因而未能产生具

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1