FractalGeometry.docx

上传人:b****5 文档编号:27992956 上传时间:2023-07-07 格式:DOCX 页数:12 大小:223.80KB
下载 相关 举报
FractalGeometry.docx_第1页
第1页 / 共12页
FractalGeometry.docx_第2页
第2页 / 共12页
FractalGeometry.docx_第3页
第3页 / 共12页
FractalGeometry.docx_第4页
第4页 / 共12页
FractalGeometry.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

FractalGeometry.docx

《FractalGeometry.docx》由会员分享,可在线阅读,更多相关《FractalGeometry.docx(12页珍藏版)》请在冰豆网上搜索。

FractalGeometry.docx

FractalGeometry

Fractals:

UsefulBeauty

(GeneralIntroductiontoFractalGeometry)

ReturntoindexBBM

"Cloudsarenotspheres,mountainsarenotcones,coastlinesarenotcircles,andbarkisnotsmooth,nordoeslightningtravelinastraightline."

BenoitMandelbrot

EdytaPatrzalek,StanAckermansInstitute,

IPO,CentreforUser-SystemInteraction,EindhovenUniversityofTechnology

Abstract

Fractalsisanewbranchofmathematicsandart.Perhapsthisisthereasonwhymostpeoplerecognizefractalsonlyasprettypicturesusefulasbackgroundsonthecomputerscreenororiginalpostcardpatterns.Butwhataretheyreally?

MostphysicalsystemsofnatureandmanyhumanartifactsarenotregulargeometricshapesofthestandardgeometryderivedfromEuclid.Fractalgeometryoffersalmostunlimitedwaysofdescribing,measuringandpredictingthesenaturalphenomena.Butisitpossibletodefinethewholeworldusingmathematicalequations?

Thisarticledescribeshowthefourmostfamousfractalswerecreatedandexplainsthemostimportantfractalproperties,whichmakefractalsusefulfordifferentdomainofscience.

 

Introduction

Manypeoplearefascinatedbythebeautifulimagestermedfractals.Extendingbeyondthetypicalperceptionofmathematicsasabodyofcomplicated,boringformulas,fractalgeometrymixesartwithmathematicstodemonstratethatequationsaremorethanjustacollectionofnumbers.Whatmakesfractalsevenmoreinterestingisthattheyarethebestexistingmathematicaldescriptions

ofmanynaturalforms,suchascoastlines,mountainsorpartsoflivingorganisms.

Althoughfractalgeometryiscloselyconnectedwithcomputertechniques,somepeoplehadworkedonfractalslongbeforetheinventionofcomputers.ThosepeoplewereBritishcartographers,whoencounteredtheprobleminmeasuringthelengthofBritaincoast.Thecoastlinemeasuredonalargescalemapwasapproximatelyhalfthelengthofcoastlinemeasuredonadetailedmap.Theclosertheylooked,themoredetailedandlongerthecoastlinebecame.Theydidnotrealizethattheyhaddiscoveredoneofthemainpropertiesoffractals.

 

Fractals’properties

Twoofthemostimportantpropertiesoffractalsareself-similarityandnon-integerdimension.

Whatdoesself-similaritymean?

Ifyoulookcarefullyatafernleaf,youwillnoticethateverylittleleaf-partofthebiggerone-hasthesameshapeasthewholefernleaf.Youcansaythatthefernleafisself-similar.Thesameiswithfractals:

youcanmagnifythemmanytimesandaftereverystepyouwillseethesameshape,whichischaracteristicofthatparticularfractal.

Thenon-integerdimensionismoredifficulttoexplain.Classicalgeometrydealswithobjectsofintegerdimensions:

zerodimensionalpoints,onedimensionallinesandcurves,twodimensionalplanefiguressuchassquaresandcircles,andthreedimensionalsolidssuchascubesandspheres.However,manynaturalphenomenaarebetterdescribedusingadimensionbetweentwowholenumbers.Sowhileastraightlinehasadimensionofone,afractalcurvewillhaveadimensionbetweenoneandtwo,dependingonhowmuchspaceittakesupasittwistsandcurves.Themoretheflatfractalfillsaplane,thecloseritapproachestwodimensions.Likewise,a"hillyfractalscene"willreachadimensionsomewherebetweentwoandthree.Soafractallandscapemadeupofalargehillcoveredwithtinymoundswouldbeclosetotheseconddimension,whilearoughsurfacecomposedofmanymedium-sizedhillswouldbeclosetothethirddimension.

Therearealotofdifferenttypesoffractals.InthispaperIwillpresenttwoofthemostpopulartypes:

complexnumberfractalsandIteratedFunctionSystem(IFS)fractals.

 

Complexnumberfractals

Beforedescribingthistypeoffractal,Idecidedtoexplainbrieflythetheoryofcomplexnumbers.

Acomplexnumberconsistsofarealnumberaddedtoanimaginarynumber.Itiscommontorefertoacomplexnumberasa"point"onthecomplexplane.Ifthecomplexnumberis

thecoordinatesofthepointarea(horizontal-realaxis)andb(vertical-imaginaryaxis).

Theunitofimaginarynumbers:

.

TwoleadingresearchersinthefieldofcomplexnumberfractalsareGastonMauriceJuliaandBenoitMandelbrot.

GastonMauriceJuliawasbornattheendof19thcenturyinAlgeria.Hespenthislifestudyingtheiterationofpolynomialsandrationalfunctions.Aroundthe1920s,afterpublishinghispaperontheiterationofarationalfunction,Juliabecamefamous.However,afterhisdeath,hewasforgotten.

Inthe1970s,theworkofGastonMauriceJuliawasrevivedandpopularizedbythePolish-bornBenoitMandelbrot.InspiredbyJulia’swork,andwiththeaidofcomputergraphics,IBMemployeeMandelbrotwasabletoshowthefirstpicturesofthemostbeautifulfractalsknowntoday.

Mandelbrotset

TheMandelbrotsetisthesetofpointsonacomplexplain.TobuildtheMandelbrotset,wehavetouseanalgorithmbasedontherecursiveformula:

separatingthepointsofthecomplexplaneintotwocategories:

∙pointsinsidetheMandelbrotset,

∙pointsoutsidetheMandelbrotset.

Theimagebelowshowsaportionofthecomplexplane.ThepointsoftheMandelbrotsethavebeencoloredblack.

 

 

ItisalsopossibletoassignacolortothepointsoutsidetheMandelbrotset.TheircolorsdependonhowmanyiterationshavebeenrequiredtodeterminethattheyareoutsidetheMandelbrotset.

 

 

HowistheMandelbrotsetcreated?

TocreatetheMandelbrotsetwehavetopickapoint(C)onthecomplexplane.Thecomplexnumbercorrespondingwiththispointhastheform:

Aftercalculatingthevalueofpreviousexpression:

usingzeroasthevalueof

weobtainCastheresult.Thenextstepconsistsofassigningtheresultto

andrepeatingthecalculation:

nowtheresultisthecomplexnumber

.Thenwehavetoassignthevalueto

andrepeattheprocessagainandagain.

Thisprocesscanberepresentedasthe"migration"oftheinitialpointCacrosstheplane.Whathappenstothepointwhenwerepeatedlyiteratethefunction?

Willitremainneartotheoriginorwillitgoawayfromit,increasingitsdistancefromtheoriginwithoutlimit?

Inthefirstcase,wesaythatCbelongstotheMandelbrotset(itisoneoftheblackpointsintheimage);otherwise,wesaythatitgoestoinfinityandweassignacolortoCdependingonthespeedatwhichthepoint"escapes"fromtheorigin.

Wecantakealookatthealgorithmfromadifferentpointofview.Letusimaginethatallthepointsontheplaneareattractedbyboth:

infinityandtheMandelbrotset.Thatmakesiteasytounderstandwhy:

∙pointsfarfromtheMandelbrotsetrapidlymovetowardsinfinity,

∙pointsclosetotheMandelbrotsetslowlyescapetoinfinity,

∙pointsinsidetheMandelbrotsetneverescapetoinfinity.

 

Juliasets

JuliasetsarestrictlyconnectedwiththeMandelbrotset.TheiterativefunctionthatisusedtoproducethemisthesameasfortheMandelbrotset.Theonlydifferenceisthewaythisformulaisused.InordertodrawapictureoftheMandelbrotset,weiteratetheformulaforeachpointCofthecomplexplane,alwaysstartingwith

.IfwewanttomakeapictureofaJuliaset,Cmustbeconstantduringthewholegenerationprocess,whilethevalueof

varies.ThevalueofCdeterminestheshapeoftheJuliaset;inotherwords,eachpointofthecomplexplaneisassociatedwithaparticularJuliaset.

HowisaJuliasetcreated?

WehavetopickapointC)onthecomplexplane.ThefollowingalgorithmdetermineswhetherornotapointoncomplexplaneZ)belongstotheJuliasetassociatedwithC,anddeterminesthecolorthatshouldbeassignedtoit.ToseeifZbelongstotheset,wehavetoiteratethefunction

using

.WhathappenstotheinitialpointZwhentheformulaisiterated?

Willitremainneartotheoriginorwillitgoawayfromit,increasingitsdistancefromtheoriginwithoutlimit?

Inthefirstcase,itbelongstotheJuliaset;otherwiseitgoestoinfinityandweassignacolortoZdependingonthespeedthepoint"escapes"fromtheorigin.ToproduceanimageofthewholeJuliasetassociatedwithC,wemustrepeatthisprocessforallthepointsZwhosecoordinatesareincludedinthisrange:

;

ThemostimportantrelationshipbetweenJuliasetsandMandelbrotsetisthatwhiletheMandelbrotsetisconnected(itisasinglepiece),aJuliasetisconnectedonlyifitisassociatedwithapointinsidetheMandelbrotset.Forexample:

theJuliasetassociatedwith

isconnected;theJuliasetassociatedwith

isnotconnected(seepicturebelow).

 

 

IteratedFunctionSystemFractals

IteratedFunctionSystem(IFS)fractalsarecreatedonthebasisofsimpleplanetransformations:

scaling,dislocationandtheplaneaxesrotation.CreatinganIFSfractalconsistsoffollowingsteps:

1.definingasetofplanetransformations,

2.drawinganinitialpatternontheplane(anypattern),

3.transformingtheinitialpatternusingthetransformationsdefinedinfirststep,

4.transformingthenewpicture(combinationofinitialandtransformedpatterns)usingthesamesetoftransformations,

5.repeatingthefourthstepasmanytimesaspossible(intheory,thisprocedurecanberepeatedaninfinitenumberoftimes).

ThemostfamousISFfractalsaretheSierpinskiTriangleandtheKochSnowflake.

SierpinskiTriangle

Thisisthefractalwecangetbytakingthemidpointsofeachsideofanequilateraltriangleandconnectingthem.Theiterationsshouldberepeatedaninfinitenumberoftimes.ThepicturesbelowpresentfourinitialstepsoftheconstructionoftheSierpinskiTriangle:

1)

2)

3)

4)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 哲学历史

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1