精品年产5万吨生物柴油生产工艺设计毕业课程设计.docx

上传人:b****3 文档编号:27339934 上传时间:2023-06-29 格式:DOCX 页数:46 大小:156.63KB
下载 相关 举报
精品年产5万吨生物柴油生产工艺设计毕业课程设计.docx_第1页
第1页 / 共46页
精品年产5万吨生物柴油生产工艺设计毕业课程设计.docx_第2页
第2页 / 共46页
精品年产5万吨生物柴油生产工艺设计毕业课程设计.docx_第3页
第3页 / 共46页
精品年产5万吨生物柴油生产工艺设计毕业课程设计.docx_第4页
第4页 / 共46页
精品年产5万吨生物柴油生产工艺设计毕业课程设计.docx_第5页
第5页 / 共46页
点击查看更多>>
下载资源
资源描述

精品年产5万吨生物柴油生产工艺设计毕业课程设计.docx

《精品年产5万吨生物柴油生产工艺设计毕业课程设计.docx》由会员分享,可在线阅读,更多相关《精品年产5万吨生物柴油生产工艺设计毕业课程设计.docx(46页珍藏版)》请在冰豆网上搜索。

精品年产5万吨生物柴油生产工艺设计毕业课程设计.docx

精品年产5万吨生物柴油生产工艺设计毕业课程设计

 

年产5万吨生物柴油生产工艺设计毕业课程设计

唐山学院

毕业设计

LLLLL

设计题目:

年产5万吨生物柴油生产工艺设计

系别:

环境与化学工程系

班级:

08石油化工生产技术2班

姓  名:

指导教师:

###

2011年6月8日

毕业设计(论文)任务书

环境与化学工程系石油化工生产技术专业2班姓名:

毕业设计(论文)时间:

2011年3月22日至2011年6月8日

毕业设计(论文)题目:

年产5万吨生物柴油生产工艺设计

毕业设计(论文)任务

1.毕业设计(论文)的目的和意义

随着经济的发展,能源短缺和环境污染是目前人类社会面临的巨大挑战,为了维持各自国家的可持续发展,许多国家正大力开发能源的可替代品。

生物柴油作为优质的能源可替代品具有优良的环保特性和可再生性,大力发展生物柴油对推进能源替代、减轻环境压力、控制大气污染具有重要意义。

2.毕业设计(论文)课题任务的内容和要求

(1)根据设计任务,查阅有关资料、文献,了解国内外生物柴油生产的现状及发展趋势;熟悉和掌握与本设计相关的基础理论、基本知识、技术规范;运用所学专业理论对工程实际问题提出设计方案。

(2)依据国家相关标准,参照###市滦南县金利海生物柴油生产工艺,进行生产生物柴油的工艺设计。

包括工艺路线的确定;物料及热量衡算;设备选型;绘制工艺流程图、主要设备图、车间布置图;编写设计说明书。

(3)设计说明书应按内容和先后次序分章、节编写。

包括题目(中英文)、摘要(中英文)、关键词(中英文)、目录、正文、谢辞、参考文献、附录、外文资料及译文等九个部分。

设计说明书字数不少于1万2千字。

(4)绘制图纸:

重点设备图、全厂工艺流程图、车间布置图,均要求2号图纸。

图纸应标注图号、图题,图纸要求图面整洁、比例适当。

3.毕业设计(论文)成果的要求

(1)按学院要求格式撰写毕业论文,将论文题目、摘要关键词翻译成英文。

(2)参考文献篇目不少于10篇,且必须有一定的外文文献,外文文献翻译出不少于1000汉字的内容简介附在毕业设计(论文)后面。

 

毕业设计(论文)进度计划安排

阶段

应完成的主要工作

起止教学周

1

根据毕业设计任务书查阅国内外相关文献资料并进行整理

第4—5周

2

确定工艺路线,撰写开题报告

第5—6周

3

进行主要设备的工艺计算及设备尺寸计算

第6—9周

4

依据计算结果和相关技术规范进行设备选型

第9—12周

5

绘制工艺流程图,主要设备图,车间布置图

第12—13周

6

编写设计说明书,翻译外文文献

第13—14周

7

修改完善毕业设计

第14—15周

8

答辩

第16周

主要参考文献

[1]付玉杰,祖元刚.生物柴油,北京:

科学出版社,2006.

[2]陈顺玉,吕玮,陈登龙等.生物柴油制备方法的研究进展[J],福建师范大学福清分校学报,2008,

(1):

7-12.

[3]葛婉华,等.化工计算[M].北京:

化学工业出版社,1990:

118-121.

[4]E.贝拉蒂尼(意).油脂加工[M].北京:

中国商业出版社,1988:

2-58.

 

指导教师(签名):

审批人(签名):

毕业设计(论文)指导教师评议书

(1)

序号

评分指标

具体要求

分数范围

得分

1

学习态度

努力学习,勤于思考,遵守纪律,作风严谨务实。

0—4分

2

调研论证

能独立查阅文献资料及从事其它形式的调研,能较好地理解课题任务并提出实施方案,有分析整理各类信息并从中获取新知识的能力。

0—8分

3

综合能力

能综合运用所学知识和技能发现与解决实际问题,工作中有创新精神,成果有新意或有实用价值。

0—10分

4

设计(论文)质量

论证、分析、设计、计算、建模、实验正确合理,工作量饱满。

0—10分

5

外文翻译

摘要及外文资料翻译准确,文字流畅,符合规定内容及字数要求。

0—4分

6

说明书

撰写质量

说明书文字通顺、结构严谨、逻辑性强、格式规范、符合规定字数要求,绘图清楚、工整、规范。

0—4分

合计

0—40分

评语:

 

指导教师:

年月日

本毕业设计(论文)需要特殊说明的有关问题

 

指导教师:

年月日

毕业设计(论文)评阅教师评议书

(2)

序号

评分指标

具体要求

分数范围

得分

1

调研论证

能独立查阅文献资料及从事其它形式的调研,能较好地理解课题任务并提出实施方案,有分析整理各类信息并从中获取新知识的能力。

0—4分

2

综合能力

能综合运用所学知识和技能发现与解决实际问题,工作中有创新精神,成果有新意或有实用价值。

0—5分

3

设计(论文)质量

论证、分析、设计、计算、建模、实验正确合理,工作量饱满。

0—6分

4

外文翻译

摘要及外文资料翻译准确,文字流畅,符合规定内容及字数要求。

0—2分

5

说明书

撰写质量

说明书文字通顺、结构严谨、逻辑性强、格式规范、符合规定字数要求,绘图清楚、工整、规范。

0—3分

合计

0—20分

评语:

 

评阅人:

年月日

毕业设计(论文)答辩小组评议书(3)

评分指标

具体要求

分数范围

自述

思路清晰,语言表达准确,概念清楚,论点正确,分析归纳合理。

0—7分

水平

工作中有创新精神,成果有新意或有实用价值。

0—8分

答辩

能够正确回答所提出的问题,基本概念清楚,有理论根据。

0—20分

资料

资料齐全,符合学院毕业设计(论文)规范化要求。

0—5分

合计

0—40分

评委1

评委2

评委3

评委4

评委5

评委6

评委7

总分

平均成绩

答辩纪要:

答辩小组秘书(签字):

 

年月日

答辩小组组长(签字):

 

年月日

答辩委员会意见

指导教师评议

评阅人评议

答辩小组评议

汇总成绩

秘书(签字)

###学院系毕业设计(论文)答辩委员会于年月日审查了专业学生的毕业设计(论文)(其中设计说明书(论文)共页,设计图纸张)。

根据其设计(论文)的完成情况以及指导教师、评阅教师、答辩小组的意见,系毕业设计(论文)答辩委员会认真审议,决议如下:

 

成绩评定为:

主任(签字):

年月日

年产5万吨生物柴油生产工艺设计

摘要

本设计是根据生物柴油的制备和精馏工序,主要以髙凝点酸化油—地沟油为原料,在98%浓硫酸催化剂作用下,使其与99.9%的甲醇发生酯化反应,其中生成的纯甲酯进行精馏,生成的粗甲酯在97%氢氧化钠催化剂下,使其与99.9%甲醇发生酯交换反应,其中生成的甲酯进行精馏,经过酯化与酯交换反应后进行的精馏得到生物柴油产品和釜残。

关键词:

制备精馏酯化酯交换

FermentationProcessDesignOf50,000tonsBiologicaldieseloilPerYear

Abstract

Thedesignisbasedonbiodieselpreparationanddistillationprocesses,mainlyintheacidoilpourpointGao-wasteoilasrawmaterial,98%concentratedsulfuricacidcatalyst,and99.9%ofitsesterificationreactionofmethanol,whichgeneratedthedistillationofpuremethylestertoproducethecrudemethylesterin97%sodiumhydroxidecatalysts,itoccurredwith99.9%methanoltransesterification,methylesterofwhichweregeneratedbydistillation,afteresterificationandtransesterificationafterthedistillationkettlebyresidualproductsandbio-diesel.

Keywords:

PreparationDistillationEsterificationTransesterification

 

1前言

1.1生物柴油的概况

1.1.1国外生物柴油发展现状

生物柴油是以菜籽油为原料,提炼而成的洁净燃油,其突出的环保性和可再生性引起了世界发达国家,尤其是资源贫乏国家的高度重视。

近十几年来,生物柴油产业在世界各国发展很快。

美国是最早研究生物柴油的国家,为了降低生物柴油的生产成本,一般在普通柴油中加入10%-20%的生物柴油,如美国的B-20生物柴油,其尾气污染物排放量可降低50%以上。

近年又在深度加氢精制的普通柴油中加入5%的生物柴油,以改善其润滑性能。

生物柴油使用最多的是欧洲,其份额已占到成品油市场的5%。

欧盟制定了一系列促进机制和激励政策,鼓励生物柴油等生物质燃料的产业发展,将生物燃料的市场份额从2005年的2%逐步增加到2010年的5.75%。

西方国家为发展生物柴油,在行业规范和政策鼓励下采取了一系列的积极措施,制定了生物柴油技术标准,欧洲联盟即将出台鼓励开发和使用生物柴油的新规定,如对制造生物柴油的企业免征增值税,规定机动车使用的生物动力燃料占动力燃料营业总额的最低份额[1]。

1.1.2国内生物柴油发展现状

生物柴油是清洁的可再生能源,是一种含氧清洁燃料,由菜籽油、大豆油、回收烹饪油、动物油等可再生油脂与甲醇发生酯化反应制得。

它是优质的石油柴油代用品。

生物柴油是典型“绿色能源”,大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重要的战略意义。

生物柴油在中国是一个新兴的行业,表现出新兴行业在产业化初期所共有的许多市场特征。

许多企业被绿色能源和支农产业双重“概念”凸现的商机所吸引,纷纷进入该行业,有人以“雨后春笋”形容生物柴油目前的状态。

一些外国公司资金实力雄厚,生产技术成熟,产业化程度高,可以借规模经济效应获取成本优势,抢占原料基地和市场份额的综合能力更强

随着改革开放的不断深入,在全球经济一体化的进程中,中国的经济水平将进一步提高,对能源的需求会有增无减,只要把关于生物柴油的研究成果转化为生产力,形成产业化,则其在柴油引擎、柴油发电厂、空调设备和农村燃料等方面的应用前景是非常广阔的[1]。

1.2国内生物柴油主要存在的问题

一是以菜籽油为原料生产的生物柴油成本高,据统计,生物柴油制备成本的75%是原料成本。

因此采用廉价原料及提高转化从而降低成本是生物柴油能否实用化的关键。

二是用化学方法合成生物柴油有以下缺点:

(1)工艺复杂、醇必须过量,后续工艺必须有相应的醇回收装置,能耗高,设备投入大;

(2)色泽深,由于脂肪中不饱和脂肪酸在高温下容易变质;

(3)酯化产物难于回收,回收成本高;

(4)生产过程有废碱液排放[2]。

1.3生物柴油的主要特性

(1)生物柴油具有良好的燃料性能。

十六烷值高,使其燃烧性好于柴油,燃烧残留物呈微酸性,使催化剂和发动机机油的使用寿命加长[3]。

(2)具有较好的安全性能。

由于闪点高,生物柴油不属于危险品。

因此,在运输、储存、使用方面的安全性又是显而易见的。

(3)具有优良的环保特性。

生物柴油中不含对环境会造成污染的芳香族烷烃,而且二氧化硫的排放也较普通柴油低很多。

(4)具有可再生性能。

作为可再生能源,与石油储量不同,其通过农业和生物科学家的努力,可供应量不会枯竭[4]。

(5)具有较好的低温发动机启动性能。

无添加剂冷滤点达-20℃。

(6)具有较好的润滑性能。

使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。

1.4生物柴油的技术现状

1.4.1生物柴油的化学法生产

生物柴油的化学法生产是采用生物油脂与甲醇或乙醇等低碳醇,并使用氢氧化钠(占油脂重量的1%)或甲醇钠(Sodiummethoxide)做为触媒,在酸性或者碱性催化剂和高温(230~250℃)下发生酯交换反应(transesterification),生成相应的脂肪酸甲酯或乙酯,再经洗涤干燥即得生物柴油。

甲醇或乙醇在生产过程中可循环使用,生产设备与一般制油设备相同,生产过程中产生10%左右的副产品甘油。

化学法包括高温裂解法和酯交换法。

裂解法是在热或热和催化剂的作用下,由热能引起化学键断裂而产生小分子,一种物质转变成另一种物质的过程。

最早对植物油进行热裂解的目的是为了合成石油。

Schwab[5]等对大豆油热裂解的产物进行了分析,发现烷烃和烯烃的含量很高,占总质量的60%;裂解产物的黏度比普通大豆油下降了3倍多,但是仍远高于普通柴油的黏度值。

在十六烷值和热值等方面,大豆油裂解产物与普通柴油相近。

Pioch[5]等将椰油和棕榈油以SiO2/Al2O3为催化剂,在450℃裂解,得到的产物分为气液固三相,其中液相的成分为生物汽油和生物柴油。

分析表明,该生物柴油与普通柴油的性质非常相近。

高温热裂解法过程简单,没有污染物产生。

缺点是裂解过程必须在高温下进行、需催化剂、设备昂贵、反应难以控制,且主要产品是生物汽油,产量不高,所以生物柴油的生产很少采用裂解法。

由于以上措施不能从根本上改善植物油的使用性能,研究者们又提出了对植物油进行酯化或酯交换反应来制备生物柴油的新方法,通过这种方法得到的产物燃烧性能接近轻柴油,燃烧后排放性能大大优于轻柴油,可直接代替石化柴油在柴油机上使用。

酯交换法即用动物或植物油脂与甲醇或乙醇等低碳醇在催化剂和高温下进行酯化反应,生成相应的脂肪酸甲酯或乙酯,再经洗涤干燥制得生物柴油,是目前研究及应用最多的生物柴油制备方法[5]。

甘油三酸酯(动植物油脂的主要成分)是羧酸官能团衍生物的一种,所有羧酸的官能团衍生物都含有同样的官能团—酰基,不管分子其它部分的结构如何,官能团的性质基本是一样的。

羧酸的衍生物中含有羰基C=O,羧基决定了羧酸衍生物的性质。

由于甘油三酸酯分子中存在羰基,决定了甘油三酸酯的特征和活性。

羰基是由σ键和其它三个原子相连接的,由于这些键所利用的是sp2轨道,所以它们处于同一个平面之中,间隔是120°。

碳所剩下的P轨道与氧的P轨道重叠而形成一个二键。

这样,碳和氧就以双键连接起来,分子中紧靠羰基碳的周围部分是平的,氧羰基碳和直接连在羰基碳上的两个原子同处在一个平面中。

如图1-1所示:

图1-1.羰基化学空间结构

电子因素和空间因素两者都使羰基特别易于在羰基碳上发起亲核进攻:

(a)氧即使带上一个负电荷还是与获取电子的倾向;(b)差不多没有空间阻碍的过渡态导致三角形的反应物变成四面体中间体。

这些因素也使酰基化合物易于遭受亲核进攻。

酯交换反应如下所示。

它是通过甲醇,将甘油三酸酯的甘油酯基取代下来,形成长链脂肪酸甲酯,经过酯基转移反应之后,使一个植物油或动物油的大分子分成3个单独的脂肪酸甲酯,缩短了碳链的长度,使产品的粘度降低,挥发度提高,低温流动性大大改善[6]。

 

Freedman[6]等认为酯交换反应是由一连串可逆反应组成,甘油三酸酯逐步转化为二脂肪酸甘油酯、甘油单酯和甘油,每一步生成一种酯化产物。

酯交换反应的机理如下所示。

从上面的反应机理来看,酯交换法制备生物柴油的过程简单,所需的催化剂易得,工艺条件缓和,低温常压下便可大量生产,易于实现工业化生产。

酯交换法制备生物柴油的技术关键是反应所用的催化剂,根据催化剂的不同,酯交换法可分为:

均相催化法、非均相催化法及超临界无催化法。

     

1.4.2生物柴油的物理法生产

在物理法生物柴油生产技术方面,主要是利用了动植物油脂具有高能量密度和可燃烧的特性用于柴油代用燃料。

由于动植物油脂具有粘度较高的特点,为了使其能够用于内燃机燃烧,一种方法是将植物油与石化柴油直接混合用于柴油代用燃料。

Amans[7]等在1983年将大豆油与2号柴油进行混合,然后在直接喷射的涡轮发动机上试验,结果表明,大豆油与2号柴油以l:

2的比例可以得到很好地混合,降低了燃料油的黏度,并可直接用于农用机械的替代燃料。

通常采用植物油与石化柴油5~30%的混合比,其性能与2号石油柴油的性能很接近。

另一种方法是将动植物油制成微乳液,来解决动植物油的黏度高的问题。

Georing[7]等用乙醇水溶液与大豆油制成微乳液Ziejewski等用冬化葵花籽油、甲醇、l一丁醇制成乳状液,Neuma等用表面活性剂(主要成分为豆油皂质、十二烷基磺酸钠及脂肪酸乙醇胺)、助表面活性剂(主要成分为乙基、丙基、异戊基醇)、水、石化柴油和大豆油制成可替代柴油的微乳液。

我国江苏理工大学与德国ELSBETT公司合作,成功地开发了燃烧植物油的小缸径高速直喷内燃机,并在开发的车用内燃机上开展了用植物油做燃料的应用研究,成功地燃烧多种植物油[7]。

1.4.3生物柴油的生物酶合成法

生物酶法合成生物柴油,即用动物油脂和低碳醇通过脂肪酶进行转酯化反应,制备相应的脂肪酸甲酯及乙酯。

酶法合成生物柴油具有条件温和、醇用量小、无污染排放的优点。

2001年日本采用固定化Rhizopusoryzae细胞生产生物柴油,转化率在80%左右,微生物细胞可连续使用430小时。

由于利用物酶法合成生物柴油具有反应条件温和、醇用量小、无污染物排放等优点,具有环境友好性,因而日益受到人们的重视。

但利用生物酶法制备生物柴油目前存在着一些亟待解决的问题:

脂肪酶对长链脂肪醇的酯化或转酯化有效,而对短链脂肪醇(如甲醇或乙醇等)转化率低,一般仅为40%-60%;甲醇和乙醇对酶有一定的毒性,容易使酶失活;副产物甘油和水难以回收,不但对产物形成一致,而且甘油也对酶有毒性;短链脂肪醇和甘油的存在都影响酶的反应活性及稳定性,使固化酶的使用寿命大大缩短。

这些问题是生物酶法工业化生产生物柴油的主要瓶颈[8]。

2生物柴油及其生产工艺流程设计

2.1生物柴油的成分

生物柴油,成分为脂肪酸甲酯,为黄色澄清透明液体,具有一种温和的、特有的气味,结构稳定,没有腐蚀性。

生物柴油就是以生物质原料为基础加工而成的一种柴油(液体燃料),具体地说,它利用植物油脂如蓖麻油、菜籽油、大豆油、花生油、玉米油、棉籽油等;动物油脂如鱼油、猪油、牛油、羊油等;或者是上述油脂精练后的下脚料——皂脚或称油渣、油泥、酸化油;汽车修理厂的废机油,脏柴油等;或者是城市潲水油(地沟油);或者是各种油炸食品后的废油和各种其他废油在进行改性处理后,与有关化工原料酯化、醇解、复合而成。

其颜色与柴油一样清亮透明。

生物柴油含碳量18—22,与柴油(16—18)基本一致,在酯化后,分子量大约280左右,与柴油220接近,根据相似相溶的原理,它与柴油相溶性极佳,而且能够与国标柴油一样混合或者单独用于汽车及机械。

生物柴油由此成名[9]。

2.2生物柴油的生产工艺流程图

 

图2-1生物柴油生产工艺流程图

2.3生物柴油的生产工序简介

2.3.1脱水脱杂工序

第一段脱水脱杂的工艺流程:

原料油首先进入储油池ST101,在50℃下自然间为6个小时。

储油池ST101,ST102用于除去原料油中的泥沙,植物纤维。

从ST102沉降6小时,取上层液进入储油池ST102。

在50℃下,第二次沉降除杂,沉降时中出来的原料油经过过滤,再经过进料泵P103,常开液位调节器RV101后进入换热器E101,E102。

经换热后的油进入加热器H101,在导热油流量的调节下进入脱水塔T101,脱水塔T101的操作温度为130±5℃。

塔顶出来的水蒸气作为换热器E101的热源,塔釜出来已经脱水后的油进入油罐V101。

V101底部要每班排一次胶质。

之后油罐中的油进入2段生产。

2.3.2酯化酯交换工序

第二段酯化酯交换工艺流程:

一段得到的油从酯化反应釜R201的顶部进入,甲醇储罐V201中的甲醇从酯化反应釜R201的底部进入,再加入改性浓硫酸,使三者在R201中反应,反应时间为2小时,依靠调节导热油的流量调节R201的温度.使其温度控制在130℃—135℃。

R201塔顶出来甲醇汽,塔釜出来的产品经过加热器H201加热后进入脱气塔T201,T201的操作温度为120℃—130℃。

T201的塔顶出来甲醇汽。

塔釜产品油进入酯化反应釜R202的顶部,改性浓硫酸也进入R202顶部,甲醇从R202的底部进入,三者在R202中进行反应,反应时间为2小时,依靠调节导热油的流量调节R202的温度,使其温度控制在130℃—135℃。

R202塔顶出来甲醇汽,塔釜产品油经过加热器H202加热后进入脱气塔T202。

T202的操作温度不得超过145℃。

T202塔顶出来甲醇汽,塔釜油进入油罐V202。

定期每班排放一次V202中的胶质,之后油罐中的油进入3段生产。

这是合成生物柴油的酯化过程。

第三段精馏塔塔釜产品中性油进入酯交换反应釜R203,甲醇从配碱罐V203顶部进入,与NaoH混合后进入R203,在R203内反应2小时。

依靠调节导热油的流量调节R203的温度,使其控制在105—110℃,然后向R203中加入H2SO4,中和反应后的NaoH。

R203塔顶出来甲醇汽,塔釜产品油经加热器H203加热后进入脱气塔T203。

T203的操作温度控制在120—130℃。

T203塔顶出来甲醇汽,塔釜出来的产品油进入油罐V205,之后油罐中的油进入3段生产,这是合成生物柴油的酯交换过程。

2.3.3回收蒸馏工序

第三段甲醇回收产品蒸馏的工艺流程:

前两段反应生成的甲醇汽进入气液分离器S301,并使S301中保持一定液位,使其中的气相进入甲醇塔的气相入口,液相进入甲醇塔的液相入口。

甲醇精馏塔T301的塔顶冷凝温度设计为67℃,塔釜再沸温度控制在100—105℃,进料温度设计为90℃,回流比为2:

1。

通过调节导热油的流量实现对T301的塔釜温度控制。

T301的塔顶产品经冷却器E301冷却后进入V301,从V301中出来的甲醇一部分进入甲醇储罐V201,一部分回流进入甲醇塔。

T301的塔釜通过调节液位控制器排出废水。

这是甲醇回收过程。

油罐V202中的粗甲酯经过加热器H302后一部分进入脱气塔T302,T302是常压设备,塔釜温度控制在180—200℃,塔顶出来甲醇汽进入S301中继续反应;一部分在液位调节器作用下进入真空精馏塔T303。

T303的真空压力设计为2.0±0.5,塔顶冷凝温度控制在75—90℃。

在2.5±0.5的真空压力下,塔釜液相气化温度为225—240℃,塔釜温度依靠H303的加热强度进行调节。

T303的侧线采出温度控制在180—220℃,侧线采出产品经冷却器E304后出来产品,塔釜在液位调节器调节下出来二段酯交换原料进入V204。

油罐V205中的粗甲酯经过加热器H304后一部分进入脱气塔T304,T304塔釜温度控制在180—200℃,塔顶出来甲醇汽进入S301中继续反应;一部分在液位调节器作用下进入真空精

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1