人教版新课标小学数学第12册解比例优秀教学设计.docx
《人教版新课标小学数学第12册解比例优秀教学设计.docx》由会员分享,可在线阅读,更多相关《人教版新课标小学数学第12册解比例优秀教学设计.docx(8页珍藏版)》请在冰豆网上搜索。
人教版新课标小学数学第12册解比例优秀教学设计
解比例
教学内容:
教科书第3页解比例的内容,练习一的第4~9题。
教学目的:
使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
教学重点:
使学生掌握解比例的方法,学会解比例。
教学难点:
引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学过程:
一、导人新课
教师:
上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?
比例的基本性质是什么?
应用比例的基本性质可以做什么?
这节课我们还要继续学习有关比例的知识,这节课我们要学习解比例。
(板书课题)
二、新课
教师:
什么叫做解比例呢?
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
解比例要根据比例的基本性质来解。
1.教学例2。
出示例2:
让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。
再回答:
“根据比例的基本性质可以把它变成什么形式?
”教师板书:
3x=8×15。
“这变成了什么?
”(方程。
)
教师说明:
这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。
因为解方程要写“解:
”,所以解比例也应写“解:
”。
(在3x前加上:
解:
)
“怎样解这个方程?
”(根据乘法各部分间的关系,把x看作一个因数,因为一个因=积÷另一个因数,可以求出x。
)教师板书:
教师:
从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。
2.教学例3。
出示例3:
解比例9/X=4.5/0.8
提问:
“这个比例与例2有什么不同?
”(这个比例是分数形式。
)
“这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?
”(能,根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程。
)
学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:
4.5x=9×0.8
“这个方程你们会解吗?
”
让学生在课本上填出求解过程。
解答后,让他们说一说是怎样解的。
3.总结解比例的过程。
提问:
“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?
”(根据比例的基本性质把比例变成方程。
)
“变成方程以后,再怎么做?
”(根据以前学过的解方程的方法求解。
)
“从上面的过程可以看出,在解比例的过程中哪一步是新知识?
”(根据比例的基本性质把比例变成方程。
)
4.做第3页“做一做”的第2题。
学生独立解答,订正时,让学生说说是怎么做的。
三、巩固练习
做练习一的第4~9题。
1.做第4题的第(6)题时,要提醒学生先把带分数化成假分数再做。
做完后,选一、二题让学生说说是怎样求解的。
2.第5题,可指名学生读题,题目告诉了什么,要求什么,然后同桌同学讨论一下,这道题可以用什么知识解答。
再选几名代表出答。
之后,让学生独立解答。
3.独立完成第6、7题。
四、学有余力的学生做第8*、9*题和思考题
做第8“题的第
(1)题,教师可以这样引导学生:
这道题需要逆用比例的基本性质,比例的基本性质是:
在一个比例里,两个内项的积等于两个外项的积。
现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项,这样就能推出比例式了。
如果把左边的两个数当作比例的内项,那么右边的两个数就应作为比例的外项,也可以推出比例式。
然后让学生自己写出比例式。
写完后,教师板书出来。
如果把3、40作为外项,有下面这些比例式:
3:
8=15:
4040:
15=8:
3
3:
15=8:
4040:
8=15:
3
如果把3、40作为内项,有下面这些比例式:
15:
3=40:
88:
40=3:
15
15:
40=3:
88:
3=40:
15
可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。
学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。
3.比例尺
教学内容:
教科书第6~8页的例4~例6,练习二的第1题。
教学目的:
使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。
教学重点:
理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。
教学难点:
设未知数时长度单位的使用。
教具准备:
教师准备一些比例尺不同的地图或本校、本地的平面图。
教学过程:
一、复习
二、新课
教师:
前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?
请同学们看一看我们教室有多大,它的长和宽大约是多少米。
(长大约8米,宽大约6米。
)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?
可能吗?
如果要画中国地图呢?
于是,人们就想出了一个聪明的办法:
在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。
不管是哪种情况,都需要确定图上距离和实际距离的比。
这就是比例的知识在实际生活中的一种应用。
今天我们就来学习这方面的知识。
1.教学比例尺的意义。
(1)教学例4。
出示例4:
让学生读题。
指名回答:
“这道题告诉我们什么?
”(在平面图上用10厘米的距离表示地面上10米的距离。
)
“要我们做什么?
”(求图上距离和实际距离的比。
)板书:
图上距离:
实际距离
“图上距离知道吗?
实际距离也知道吗?
各是多少?
”继续板书如下:
图上距离:
实际距离
10厘米:
10米
“10厘米和10米的单位相同吗?
能直接化简吗?
”
教师说明:
这两个数量的单位不同,所以先要把它们化成相同单位,再化简。
“是把厘米化作米,还是把米化作厘米?
为什么?
”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。
)
“10米等于多少厘米?
”学生回答后,教师把10米改写成1000厘米。
“现在单位统一了,是多少比多少,怎样化简?
”教师边说边擦掉10和1000后面的单位“厘米”,并加上“:
”,板书成如下形式:
图上距离:
实际距离
10:
1000
请一名同学到黑板前化简这个比,别的同学在练习本上做。
集体订正后,教师写出这道题的“答:
…”。
然后说明:
因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。
(板书:
图上距离:
实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。
(板书:
或
图上距离=比例尺
实际距离
图上距离是比的前项,实际距离是比的后项。
为了计算简便,通常把比例尺写成前项是1的最简单整数比。
教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。
最后教师指出:
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。
如1O厘米:
1O米,要把后项的米化成厘米后再算出比例尺。
③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。
比如,例4中的比例尺通常写成:
1:
100=
(2)巩固练习。
让学生完成第6页的“做一做”。
教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。
集体订正时,要注意检查学生求出的比例尺的前项是不是“l”。
2.教学根据比例尺求图上距离或实际距离。
教师:
知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。
(1)教学例5。
出示例5:
指名读题,并说出题目告诉了什么,要求什么。
(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。
)
教师启发:
因为=比例尺,要求实际距离可以用解比例的方法来求。
“这道题的图上距离是多少?
”板书:
15
“实际距离不知道,怎么办?
”(用x表示。
)在15的下面板书出x,并在它们中间画上分数线。
“因为图上距离和实际距离的单位要相同,所设的x应用什么单位?
”(应用厘米。
)板书:
解:
设南京到北京的实际距离为x厘米。
“比例尺是多少?
写成什么形式?
”(写成分数形式。
)最后板书成下面的形式:
15=1
x6000000
指定一名学生到前面求X的值,其他学生在练习本上做。
订正后,回答:
“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。
应该怎么办?
”板书:
90000000厘米=900千米,并写出这道题的答。
之后,再回忆一下解答过程。
(2)巩固练习。
做第7页上的“做一做”。
先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。
集体订正时,要注意检查学生是否把实际距离化成了千米。
(3)教学例6。
出示例6:
一个长方形操场,长110米,宽90米,把它画在比例尺是的图纸上,长和宽各应画多少厘米?
指名读题并说出题目告诉了什么,求什么。
(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。
)
教师:
我们先来求长的图上距离。
长的图上距离不知道,应设为x。
(板书:
解:
设长应画x厘米。
)长的实际距离是多少?
它和图上距离的单位相同吗?
怎么办?
比例尺是多少?
然后让学生求x的值,并说出求解过程,教师板书出来。
“这道题做完了吗?
还要求宽的图上距离。
宽的图上距离不知道,应用什么未知数来表示呢?
因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。
我们就用y来表示、”板书:
设宽应画y厘米。
让学生把这道题做完。
最后教师写出这道题的答。
三、练习
1、判断下面这段话中,哪些是比例尺,哪些不是比例尺?
为什么?
2、独立完成练习二第1题,并订正。
3、完成练习二的第2题、3题。
第3题,让学生先想想比例尺子表示的意思。
1厘米的图上距离相当于100厘米的实际距离。
)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。
集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。