数学竞赛命题研讨会材料汇总.docx

上传人:b****3 文档编号:26794289 上传时间:2023-06-22 格式:DOCX 页数:24 大小:33.22KB
下载 相关 举报
数学竞赛命题研讨会材料汇总.docx_第1页
第1页 / 共24页
数学竞赛命题研讨会材料汇总.docx_第2页
第2页 / 共24页
数学竞赛命题研讨会材料汇总.docx_第3页
第3页 / 共24页
数学竞赛命题研讨会材料汇总.docx_第4页
第4页 / 共24页
数学竞赛命题研讨会材料汇总.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

数学竞赛命题研讨会材料汇总.docx

《数学竞赛命题研讨会材料汇总.docx》由会员分享,可在线阅读,更多相关《数学竞赛命题研讨会材料汇总.docx(24页珍藏版)》请在冰豆网上搜索。

数学竞赛命题研讨会材料汇总.docx

数学竞赛命题研讨会材料汇总

2017数学竞赛命题研讨会材料汇总

xx年全国数学竞赛命题研讨会试题汇编

 

xx年6月

目录

代数

代数1不等式…………………………………………………人大附中张端阳1代数2不等式…………………………………………………人大附中张端阳1代数3不等式……………………………复旦附中李朝晖、施柯杰、肖恩利3代数4不等式……………………………复旦附中李朝晖、施柯杰、肖恩利4代数5不等式……………………………复旦附中李朝晖、施柯杰、肖恩利7代数6不等式…………………………………………华东师大二附中唐立华8代数7不等式……………………………………………湖南师大附中张湘君9代数8不等式……………………………………………湖南师大附中张湘君10代数9不等式……………………………………………湖南师大附中汤礼达11代数10不等式……………………………………………湖南师大附中汤礼达12代数11不等式………………………………………吉大附中石泽晖、王庶赫13代数12不等式…………………………………绵阳东辰学校袁万伦、姚先伟14代数13不等式……………………………………………绵阳东辰学校袁万伦15代数14三角不等式……………………………………………广州二中程汉波16代数15不等式……………………………………………大连二十四中邰海峰17代数16数列…………………………………………………东北育才学校张雷18代数17不等式………………………………………………东北育才学校张雷19代数18不等式………………………………………………大连二十四中李响23代数19多项式……………………………………学而思培优苏州分校李家夫24代数20不等式…………………………………………………华东师大张丽玉24代数21不等式……………………………………………………杭州二中赵斌25

几何

几何1……………………………………复旦附中李朝晖、施柯杰、肖恩利28

几何2………………………………………………………湖南师大附中苏林29几何3………………………………………………………湖南师大附中苏林30几何4……………………………………………………………郑州一中张甲31几何5………………………………………………………西安铁-中杨运新32几何6………………………………………………………西安交大附中金磊33几何7………………………………………………………西安交大附中金磊34几何8………………………………………………………西安交大附中金磊35几何9………………………………………………………西安交大附中金磊36几何10………………………………………………………西安交大附中金磊36几何11………………………………………………………西安交大附中金磊37几何12……………………………………………………东北育才学校缠祥瑞38几何13………………………………………………学而思培优北京分校陈楷39几何14………………………………………………学而思培优北京分校陈楷40几何15……………………………………………学而思培优北京分校杨溢非41几何16……………………………………………………………北京四中侯彬42几何17………………………………………………………西安交大附中金磊43

数论

数论1…………………………………………………………东北育才学校张雷45数论2………………………………………………………………杭州二中赵斌45数论3………………………………………复旦附中李朝晖、施柯杰、肖恩利47数论4………………………………………………………东北育才学校缠祥瑞48数论5……………………………………………………………杭州二中胡克元50数论6………………………………………………学而思培优杭州分校李卓伦52数论7………………………………………………学而思培优杭州分校李卓伦54数论8………………………………………………学而思培优武汉分校巩鸿文55数论9………………………………………………学而思培优武汉分校巩鸿文55数论10……………………………………………学而思培优深圳分校涂小林58数论11……………………………………………学而思培优深圳分校涂小林60

组合

组合1……………………………………………………………人大附中张端阳62组合2…………………………………………………………西安交大附中金磊63组合3…………………………………………………………西安交大附中金磊64组合4…………………………………………………………西安交大附中金磊65组合5………………………………………………学而思培优广州分校余泽伟66组合6………………………………………………学而思培优广州分校余泽伟67组合7………………………………………………学而思培优苏州分校李家夫68组合8………………………………………………学而思培优北京分校杨溢非69组合9……………………………………………………………北京四中范兴亚71

命题小品

一苇渡江……………………………………………江西科技师范大学陶平生73

代数

代数1(人大附中张端阳)

代数2(人大附中张端阳)

1

当集合为{t,t?

1}时,设bi?

i(i?

1,2,,t)中,值为t?

1的个数为

x?

{1,2,,t?

1},值为t的个数为t?

x,则t?

2,且

?

t2?

t?

2t2?

t?

2?

t(t?

1)t(t?

1),n?

x(t?

1)?

(t?

x)tx?

?

?

22221?

8n?

1?

)1m2?

(m)12m(m?

(m?

1)mm?

令t?

m,则n?

?

,,,x?

n2222且

S?

?

(bk?

k)?

?

k2?

x(t?

1)2?

(t?

x)t2?

2k?

1k?

1ttt(t?

1)(2t?

1)6t(t?

1)(2t?

1)?

t3?

(2t?

1)x?

6(m?

1)m?

m(m?

1)(2m?

1)?

?

m3?

(2m?

1)?

n26?

?

(m?

1)m(m?

1)?

(2m?

1)n?

.3(m?

1)m(m?

1),

3综上,S?

2?

ibi?

?

bi的最小值是(2m?

1)n?

2i?

1i?

1tt?

1?

8n?

1?

m?

其中?

?

.

2?

?

代数5

求最大的实数M,使得不等式(x2?

y2)3?

M(x3?

y3)(xy?

x?

y)对一切满足

x?

y?

0的实数x,y均成立.

解:

所求M的最大值为32.

首先,取x?

y?

4,可得M?

32.下证:

(x2?

y2)3?

32(x3?

y3)(xy?

x?

y)对一切满足x?

y?

0的实数x,y均成立.

记s?

x2?

y2,t?

x?

y.已知2s?

t,t?

0.要证的不等式转化为:

2s3?

8t(3s?

t2)(t2?

2t?

s)

7

设s?

rt,上述不等式等价于:

r3?

8(3r?

t)(t?

2?

r),其中2r?

t?

0,

r3?

8(3r?

t)(t?

2?

r)?

8(t?

2r?

1)2?

r3?

8r2?

16r?

8?

r3?

8r2?

16r?

r(r?

4)2?

0,

所以r3?

8(3r?

t)(t?

2?

r),其中2r?

t?

0成立.

代数6

A:

设正数a,b,c满足:

a2?

b2?

c2?

3,求证:

abc2.4?

a24?

b24?

c2证明:

先证如下引理

引理设正数a,b,c满足:

a2?

b2?

c2?

3,则

(a?

b?

c)2?

9(111?

?

)?

18.(*)2224?

a4?

b4?

c引理证明:

?

9?

(a?

b?

c)2?

(a?

b)2?

(b?

c)2?

(c?

a)2,

9(111?

?

)?

92224?

a4?

b4?

c111?

?

)?

94?

a24?

b24?

c2?

[(4?

a2)?

(4?

b2)?

(4?

c2)](2?

4?

b24?

a2?

4?

a24?

b,(a?

b)2?

(b?

c)2?

(c?

a)2.?

?

cab.?

?

2224?

a4?

b4?

c222?

4?

b24?

a故(*)2?

4?

a24?

b?

记I1?

bca,I22224?

a4?

b4?

c要证原不等式,只要证明:

?

4?

b24?

a2?

?

2?

4?

a24?

b(a?

b)2?

?

2(a2?

b2)22222?

?

(a?

b)?

(4?

a)(4?

b)?

(a?

b)22(4?

a)(4?

b)8

而(4?

a2)(4?

b2)?

(1?

b2?

c2)(a2?

1?

c2)?

(a?

b?

c2)?

(a?

b)2,上式成立,故引理得证.

(a?

b?

c)21,y?

?

下证原题:

记x?

,则引理有:

x?

y?

2.94?

a2柯西不等式,有

?

abc22?

4?

a24?

b4?

c?

2?

111(a?

b?

c)2222?

?

4?

a4?

b4?

c499?

2x?

y?

y?

32?

9xy2?

(2x)?

y?

y,

22?

33?

所以  故原不等式得证.

abc3242,22234?

a4?

b4?

c3a2?

b2?

c2?

3,注记:

利用已证问题(见2015命题研讨会题目):

设正数a,b,c满足:

b?

c4?

a2?

c?

a4?

b2?

a?

b4?

c2?

23.

我们有如下:

B:

设正数a,b,c满足:

a2?

b2?

c2?

3,求证:

(a?

b?

c)(14?

a2?

14?

b2?

14?

c2)?

2(1?

3).

代数7

设xi?

R?

i?

1,2,,n,试确定最小实数c,使得

c?

xi?

1nab?

ni?

(?

xi)?

(?

xia)b.

i?

1i?

1nn分析:

齐次,且xi?

R?

i?

1,2,,n,不妨设

?

xi?

1ni?

1.

9

原不等式?

c?

(?

xi)?

(?

x)i?

1i?

1nnabi?

xi?

1n?

c?

(?

x)nabiab?

ni?

xi?

1ni?

1n,则只需求S?

(?

xia)bnab?

ni?

xi?

1i?

1n的最

ab?

ni大值.

幂平均不等式,(i?

1?

xnnabi)1ab?

(i?

1)?

nnax?

i1ab?

1?

xi?

1nabi?

(?

xia)b,则

i?

1nnS?

b?

1?

xi?

1nabi?

xi?

1n.

ab?

niChebyshev不等式,

n?

xi?

1nab?

ni?

(?

x)(?

x)?

nx1x2niabii?

1i?

1nnxn?

x?

?

xabii?

1i?

1nnab?

ni?

?

xiab.

i?

1n于是S?

nb?

1,当x1?

x2?

?

xn?

1时取等号,所以Smax?

nb?

1?

cmin?

nb?

1.

代数8

给定m?

3且m?

N,设a1,a2,,am?

0,n?

m且n?

N,求证:

?

(i?

1maim)n?

n,其中am?

1?

a1.

ai?

ai?

121nm,m,则?

bi?

1,原不等式?

?

()?

n.

2i?

11?

bii?

1m1n1m()()?

?

m1?

b1?

bi?

1ii?

i?

1,于是只需证明:

mmma分析:

令bi?

i?

1,i?

1,2,aimm幂平均不等式知

n1mm()?

m.?

1?

b2i?

1i考虑到bi?

0,i?

1,2,m,m,可设bi?

eci,i?

1,2,,m,则

?

c?

0.

ii?

1m10

1m记f(t)?

(),则

1?

etmm1mm1mmm()?

?

()?

?

f(c)?

.icimmm1?

b21?

e22i?

1i?

1i?

1im1mtt?

m?

2t求f(t)?

(的二阶导数得下面分两种情f''(t)?

me(1?

e)(me?

1),)t1?

e况讨论:

m1m1m1)?

(),(i)当bi(i?

1,2,,m)中至少有一个小于时,?

(1mi?

11?

bi1?

m11mm1)?

m?

(1?

)?

mm?

2.于是只需证明(12m1?

m设g(x)?

x,x?

3,则g'(x)?

x?

1x1x1?

(1?

lnx)?

0,所以g(x)在x?

3时单调2x1111递减,所以(1?

)?

mm?

(1?

)?

33?

2.

m3(ii)当bi(i?

1,2,m1,m)都大于等于时,f''(t)?

0,则f(t)是下凸函数,

m琴生不等式得?

f(ci)?

m?

f(i?

1?

ci?

1mim)?

m?

f(0)?

m.2m1mm)?

m,证毕.综上所述,?

(2i?

11?

bi

代数9

设a1,a2,...,an?

R?

,求证:

?

i?

1nmain?

1?

?

12ai?

(n?

1)?

aji?

j证明:

首先我们证明局部不等式:

(a?

an2?

12n1?

an2?

12n2?

...?

an2?

1AM?

GM2n2n)?

(an2?

12n1?

(n?

1)an?

1n2n?

12n2n?

1nn

an?

12n2n)n2?

1n1?

2(n?

1)an2?

1n?

12n2n12

aan?

12nn?

(n?

1)2anan2?

?

?

a?

an2?

1n1?

(n2?

1)n2?

12(n?

1)n?

1n2?

12n122aa?

1?

an2?

1n1?

(n2?

1)aaan

n?

1n12所以有

11

a1n?

1(a?

an2?

12n1?

an2?

12n2?

...?

an2?

1n12n2?

12n2n)2n2?

n?

1n1?

(n2?

1)aaan?

aan2?

1n1

[a1n?

1?

(n2?

1)a1a2an]a1n?

1故n?

1?

2a1?

(n?

1)a2a3...anan2?

12n1?

an2?

12n1n2?

12n2?

...?

an2?

12nnaa?

同理有n?

1ai?

(n?

1)?

aji?

jnn?

1i2?

an2?

12nin2?

1n2nii?

1

(i?

2,3,...,n)

将上式相加,即得?

i?

1ain?

1?

?

1?

(n2?

1)?

aji?

j

代数10

给定k,n?

N*,k?

n?

1,n?

2k,设a1,a2,?

an是?

1,2,?

n?

的一个排列,令

Si?

ai?

ai?

1ai?

k?

1,记S?

min?

S1,S2,?

Sn?

.求

证:

Sk(n?

1)1.?

2?

k(n?

1)?

a因k?

n?

1,故a1?

?

,2?

?

kn(n?

1).2k1?

证明:

反设S故nS?

?

Si?

k?

ai?

i?

1i?

1nn?

S1?

S2,故必有S1?

S或S2?

S,

k(n?

1)k(n?

1)?

Z?

S?

,与假设矛盾.22k(n?

1)?

1故只须再考虑k为奇数,n为偶数的情况,对1?

i?

n,Si?

.

2当k为偶数或n为奇数,得

记P?

{i|Si?

k(n?

1)?

1k(n?

1)?

1P}Q?

{j|Sj?

}则PQ?

?

1,2,?

n?

22,,

Q?

?

.

因为k?

n?

1,所以ai?

ai?

k得到Si?

Si?

1(1?

i?

n).

故P中任意的两元素之差都大于1,又P?

Q?

n?

P?

?

nk(n?

1)?

1k(n?

1)?

1kn(n?

1)P?

Q?

?

Si=?

Si?

?

Si?

222i?

1i?

Pi?

Qn2

12

k(n?

1)?

1k(n?

1)?

1kn(n?

1)nP?

(n?

P)P2222kn(n?

1)?

2?

等号必须成立,即P?

且Si?

n2k(n?

1)?

1kn(n?

1)?

1(1?

i?

n).或

22?

k(n?

1)?

1,i为奇数?

k(n?

1)?

1?

2不妨S1?

则Si?

?

k(n?

1)?

12?

,i为偶数?

?

2k(n?

1)?

1k(n?

1)?

1?

ak+1?

a1=1.,S2?

22k(n?

1)?

1k(n?

1)?

1?

ak+1?

a2k+1=1.又因为k为奇数?

Sk+1=,?

Sk+2=22S1?

故a1=a2k+1,所以n|2k,但2k?

2n?

n

代数11

?

2k,与题设相矛盾.

{bn}满足?

ai?

?

bi,已知正数序列{an},且a1?

a2?

?

an,an?

bn?

bn?

1?

?

b1?

a1,

i?

1i?

1nn对任意的1?

i?

j?

n,均有aj?

ai?

bj?

bi,证明:

?

ai?

?

bi.

i?

1i?

1nn证明:

于aj?

ai?

bj?

bi,则aj?

bj?

ai?

bi.这说明数列{ai?

bi}in?

1是单调不减序列.又an?

bn?

0,a1?

b1?

0.

当a1?

b1?

0时,必存在1?

m?

n,使得:

当1?

i?

m时,ai?

bi,此时记

?

i?

bi?

ai;当m?

i?

n时,ai?

bi,此时记?

i?

ai?

bi.

?

ai?

?

bi可知:

?

?

ii.而要证明的?

ai?

?

bi可变形为?

ai?

1.

i?

1i?

1i?

mi?

1i?

1i?

1i?

1nnnm?

1nnnbi均值不等式可知:

?

i?

1nnai?

(i?

1i)n,故只需证?

ai?

n即可,往证式bini?

1bi?

bnai成立.事实上,

n?

?

aibi?

?

im?

1bi?

?

i?

n?

n?

n?

1bnbn?

1bibii?

1bii?

mi?

1nmbm?

?

m?

1bm?

11b1

?

n?

?

nbm?

?

n?

1bmmbm?

?

m?

1bmbi?

?

1bm?

n,

?

?

1?

i?

mbi?

bm?

0,?

i?

0,0?

bi?

bm,?

i?

0,这是于n?

i?

m时,故有i?

i;时,

bm13

故有?

i?

?

bi?

?

ibm.

nn当a1?

b1?

0时,则对1?

i?

n,均有ai?

bi,又?

ai?

?

bi,故对1?

i?

n,

i?

1i?

1均有ai?

bi,此时结论也成立.

代数12

设a?

0,b?

0,c?

0,求证:

333111(a2?

b?

)(b2?

c?

)(c2?

a?

)?

(2a?

)(2b?

)(2c?

).

444222

44223111证明:

因为a2?

b?

?

a2?

?

b?

?

a?

b?

44223131同理b2?

c?

?

b?

c?

c2?

a?

?

c?

a?

4242333111所以(a2?

b?

)(b2?

c?

)(c2?

a?

)?

(a?

b?

)(b?

c?

)(c?

a?

),

444222111111即证(a?

b?

)(b?

c?

)(c?

a?

)?

(2a?

)(2b?

)(2c?

),

222222将此式左,右两端分别展开,即证

11a2b?

ab2?

a2c?

ac2?

b2c?

bc2?

(a2?

b2?

c2)?

6abc?

(ab?

bc?

ca)(?

22因为a2?

b2?

2ab,b2?

c2?

2bc,c2?

a2?

2ca,三式相加得

a2?

b2?

c2?

ab?

bc?

ca,

所以

12(a?

b2?

c2)21?

a(b2?

c2)?

b(a2?

c2)?

c(a2?

b2)?

(a2?

b2?

c2)211?

(ab?

bc?

ca)?

6abc?

(ab?

bc?

ca),22a2b?

ab2?

a2c?

ac2?

b2c?

bc2?

?

2abc?

2bac?

2cab即(?

)成立,故

333111(a2?

b?

)(b2?

c?

)(c2?

a?

)?

(2a?

)(2b?

)(2c?

44422214

成立,当且仅当a?

b?

c?

1时取等号.2

代数13

a3?

b2b3?

c2c3?

a22.正数a,bc满足a?

b?

c?

1,证明:

b?

cc?

aa?

b3问题来源:

韩京俊《初等不等式的证明方法》地6页例:

正数a,b,c满

a2?

bb2?

cc2?

a2.足a?

b?

c?

1,证明:

b?

cc?

aa?

b证法1:

因为

a2?

bb2?

cc2?

aa3b3c3b2c2a2b?

cc?

aa?

bb?

cc?

aa?

bb?

cc?

aa?

b,

b2c2a2(a?

b?

c)21,cauchy不等式的推论得

b?

cc?

aa?

b2(a?

b?

c)2a3b3c3a4b4c4(a2?

b2?

c2)2,b?

cc?

aa?

bab?

acbc?

baca?

cb2(ab?

bc?

ca)1又因为(a?

b?

c)2?

3(ab?

bc?

ca),即ab?

bc?

ca?

3cauchy不等式3(a2?

b2?

c2)?

(a?

b?

c)2?

1,即a2?

b2?

c2?

1,3abc1(a2?

b2?

c2)21,故?

,即所以

b?

cc?

aa?

b62(ab?

bc?

ca)6a2?

bb2?

cc2?

a112b?

cc?

aa?

b623.

333证法2:

因为

a2?

bb2?

cc2?

aa3b3c3b2c2a2b?

cc?

aa?

bb?

cc?

aa?

bb?

cc?

aa?

b,

b2c2a2(a?

b?

c)21,cauchy不等式的推论得

b?

cc?

aa?

b2(a?

b?

c)2a3a(b?

c)2b3b(c?

a)2c3c(a?

b)2?

?

a,?

?

b,?

?

c,所以因为

b?

c4c?

a4a?

b415

a3b3c31222a?

b?

c?

(ab?

bc?

ca)b?

cc?

aa?

b255?

(a?

b?

c)2?

(ab?

bc?

ca)?

1?

(ab?

bc?

ca),

221又因为(a?

b?

c)2?

3(ab?

bc?

ca),即ab?

bc?

ca?

3abc15511所以1?

(ab?

bc?

ca)?

1,即.b?

cc?

aa?

b62236a2?

bb2?

cc2?

a112?

?

故.b?

cc?

aa?

b623

代数14

已知A,B,C为?

ABC的三个内角,求

n3331?

sinAsinB?

n1?

sinBsinC?

n1?

sinCsinA,n?

N?

的最小值.

解当n?

1时,因为

211?

A?

B?

C?

9sinAsinB?

sinA?

3sin?

,33?

34?

2所以

?

?

1?

sinAsinB?

?

3?

?

sinAsinB?

当n?

2时,万能公式及柯西不等式得

3.4ABABtan4tantan2222sinAsinB?

?

2?

2A?

?

2B?

AB?

?

1?

tantan?

?

1?

tan?

?

1?

tan?

2222?

?

4tan当且仅当tan所以有

ABtan2212AB?

?

1?

tantan?

?

22?

?

4tan?

?

1?

tan1?

tan?

AB?

tan?

22?

.2AB?

tan?

22?

2AB?

tan,即A?

B时取等号.22?

1?

sinAsinB?

?

设x?

tanABBCCAtan,y?

tantan,z?

tantan,则x,y,z均为正22222216

数,因为tanABBCCAtan?

tantan?

tantan?

1,故有x?

y?

z?

1.于是222222?

1?

sinAsinB?

?

y?

z?

1?

x?

?

,1?

x2x?

y?

z?

?

2在Nesbitt不等式:

?

a3b?

y?

z,令a?

x?

y,?

?

a,b,c?

0?

中,c?

z?

xb?

c2y?

z3?

?

即得?

,当且仅当A?

B?

C?

时,等号成立.2x?

y?

z23当n?

3时,同第种情况可得,

?

y?

z?

?

y?

z?

1?

1?

x?

333331?

sinAsinB2?

1?

x2x?

y?

z2x?

y?

z2222?

32?

3?

y?

z?

33?

32?

?

32.

2?

2x?

y?

z?

4?

x?

y?

z?

2?

2y?

z?

当且仅当x?

y?

z,即A?

B?

C?

时,等号成立.3当n?

4时,同第种情况可得,

21?

x1?

x?

1?

x?

nn1?

sinAsinB1?

x?

?

2,21?

x?

1?

x?

1?

x当A?

0,B?

C?

?

2时,等号成立.

33;当n?

2时,原式的最小值为;42综上所述,当n?

1时,原式的最小值为

332当n?

3时,原式的最小值为;当n?

4时,原式没有最小值,但下确界为2.

2

代数15

无穷个非钝角三角形,将其最短边、次长边、最长边分别相加,得到一个新的

2?

大三角形,求证:

这个大三角形的最大角小于.

3解:

设这无穷多个三角形的最短边依次为a1,a2,长边依次为c1,c2,?

次长边依次为b1,b2,,最

其中ai2?

bi2…bici.ci2,且ai剟?

?

a2?

b2?

c2设a?

?

ai,b?

?

bi,c?

?

ci,最大角余弦为.对于两个不同的正

2abi?

1i?

1i?

117

整数i,j,因为

222222aiaj?

bbij?

ai?

bi?

aj?

bj?

aiaj?

bbij?

(aiaj?

bbij)?

(aibj?

biaj),

又因为aiaj?

bbij?

aibj?

biaj,

22所以(aiaj?

bbij)?

(aibj?

biaj)222?

(aiaj?

bbij)?

2(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1