中南大学机械制造工艺设计学实验报告之加工误差统计分析.docx

上传人:b****9 文档编号:25150907 上传时间:2023-06-05 格式:DOCX 页数:15 大小:437.92KB
下载 相关 举报
中南大学机械制造工艺设计学实验报告之加工误差统计分析.docx_第1页
第1页 / 共15页
中南大学机械制造工艺设计学实验报告之加工误差统计分析.docx_第2页
第2页 / 共15页
中南大学机械制造工艺设计学实验报告之加工误差统计分析.docx_第3页
第3页 / 共15页
中南大学机械制造工艺设计学实验报告之加工误差统计分析.docx_第4页
第4页 / 共15页
中南大学机械制造工艺设计学实验报告之加工误差统计分析.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

中南大学机械制造工艺设计学实验报告之加工误差统计分析.docx

《中南大学机械制造工艺设计学实验报告之加工误差统计分析.docx》由会员分享,可在线阅读,更多相关《中南大学机械制造工艺设计学实验报告之加工误差统计分析.docx(15页珍藏版)》请在冰豆网上搜索。

中南大学机械制造工艺设计学实验报告之加工误差统计分析.docx

中南大学机械制造工艺设计学实验报告之加工误差统计分析

《机械制造工艺学》课程实验报告

实验名称:

加工误差的统计分析

姓名:

***班级:

机械13**班学号:

080113****

实验日期:

2015年10月22日指导教师:

老师成绩:

1.实验目的

(1)掌握加工误差统计分析法的基本原理和应用。

(2)掌握样本数据的采集与处理法,要求:

能正确地采集样本数据,并能通过对样本数据的处理,正确绘制出加工误差的实验分布曲线和图。

(3)能对实验分布曲线和图进行正确地分析,对加工误差的性质、工序能力及工艺稳定性做出准确的鉴别。

(4)培养对加工误差进行综合分析的能力。

2.实验容与实验步骤

(一)实验容:

在调整好的无心磨床上连续加工一批同样尺寸的试件,测量其加工尺寸,对测得的数据进行不同的处理,以巩固机制工艺学课程中所学到的有关加工误差统计分析法的基本理论知识,并用来分析此工序的加工精度。

(二)原理分析:

在实际生产中,为保证加工精度,常常通过对生产现场中实际加工出的一批工件进行检测,运用数理统计的法加以处理和分析,从中寻找误差产生的规律,找出提高加工精度的途径。

这就是加工误差统计分析法。

加工误差分析的法有两种形式,一种为分布图分析法,另一种为点图分析法。

1.分布图分析法

分布图分析法是通过测量一批加工零件的尺寸,把所测到的尺寸围分为若干个段。

画出该批零件加工尺寸(或误差)的实验分布图。

其折线图就接近于理论分布曲线。

在没有明显变值系统误差的情况下,即工件的误差是由很多相互独立的微小的随机误差综合作用的结果,则工件尺寸分布符合正态分布。

利用分布曲线图可以比较便地判断加工误差性质,确定工序能力,并估算合格品率,但利用分布图分析法控制加工精度,必须待一批工件全部加工完毕,测量了样本零件的尺寸后,才能绘制分布图,因此不能在加工过程中及时提供控制精度的信息,这在生产上将是很不便的。

2.点图法

在生产中常用的另一种误差分析法是点图法或

图法。

点图法是以顺序加工的零件序号为横坐标,零件的加工尺寸为纵坐标,把按加工顺序定期测量的工件尺寸画在点图上。

点图可以反映加工尺寸和时间的关系,可以看出尺寸变化的趋势,找出产生误差的原因。

图称为平均尺寸——极差质量控制图。

一般是在生产过程开始前,先加工一批试件(本实验中即用本批加工的零件作为试件),根据加工所得的尺寸,求出平均值

和极差R而绘制成的。

点图:

中线

上控制线

下控制线

R点图:

中线

上控制线Rs=D1

下控制线Rx=D2

是将一批工件依照加工顺序按n个分为一组第i组的平均值,共分成k组;

是第i组的极差;

式中A2、D1、D2的数值根据数理统计原理而定出(见表1)。

表1

每组件数n

A2

D1

D2

4

0.73

2.28

0

5

0.58

2.11

0

将生产中定期抽样的尺寸结果,点在

图上,从点子在图中的位置便可看出

和R的波动,它反映了工件平均值的变化趋势和随机误差的分散程度。

图上的控制界限线,就是用来判断工艺是否稳定的界限。

因此

图是用来判断工艺过程的稳定性的。

(三)实验步骤:

1.按无心磨床的操作法,加工一批零件(本实验为100件)。

加工完的零件,擦洗干净,按加工顺序放置好。

2.按加工顺序测量工件的加工尺寸,记录测量结果。

3.绘制直图和分布曲线

1)找出这批工件加工尺寸数据的最大值xmax和最小值xmin,按下式计算出极差R。

R=xmax一xmin

2)确定分组数K(K一般根据样本容量来选择,建议可选在8~11之间)。

3)按下式计算组距d。

4)确定组界(测量单位:

微米)。

5)做频数分布表。

6)计算

7)画直图

  以样本数据值为横坐标,标出各组组界;以各组频率密度为纵坐标,画出直图。

8)画分布曲线

  若工艺过程稳定,则误差分布曲线接近正态分布曲线;若工艺过程不稳定,则应根据实际情况确定其分布曲线。

画出分布曲线,注意使分布曲线与直图协调一致。

9)画公差带

  在横轴下画出公差带,以便与分布曲线相比较。

4.绘制

(1)确定样组容量,对样本进行分组

样组容量m通常取4或5件。

按样组容量和加工时间顺序,将样本划分成若干个样组。

(2)计算各样组的平均值和极差

对于第i个样组,其平均值和极差计算公式为:

式中

——第i个样组的平均值;

    

——第i个样组的标准差;

    

——第i个样组第j个零件的测量值;

    

——第i个样组数据的最大值;

    

——第i个样组数据的最小值

(3)计算

图控制限(计算公式见实验原理)

(4)绘制

 以样组序号为横坐标,分别以各样组的平均值

和极差R为纵坐标,画出

图,并在图上标出中心线和上、下控制限。

5.按下式计算工序能力系数Cp

6.判别工艺过程稳定性

可按下表所列标准进行判别。

注意,同时满足表中左列3个条件,工艺过程稳定;表中右列条件之一不满足,即表示工艺过程不稳定。

 

表2

7.加工误差综合分析

通过对分布图和

图的分析,可以初步判断误差的性质。

进而结合具体加工条件,分析影响加工误差的的各种因素,必要时,可对工艺系统的误差环节进行测量和实验。

3.实验环境

设备:

无心磨床

量仪:

0~25mm数显千分尺一把

试件:

φ24(±0.01)×32的45钢(淬火)100件

4.实验过程与分析

表1-3实验数据

序号

记录数据

序号

记录数据

序号

记录数据

序号

记录数据

1

23.995

26

23.994

51

23.993

76

23.995

2

23.990

27

23.987

52

23.992

77

23.995

3

23.997

28

23.989

53

23.990

78

23.989

4

23.995

29

23.995

54

23.992

79

23.995

5

23.998

30

23.997

55

23.992

80

23.995

6

23.991

31

23.985

56

23.989

81

24.001

7

23.990

32

23.993

57

23.990

82

23.989

8

23.992

33

23.992

58

24.000

83

24.000

9

23.990

34

23.995

59

23.985

84

23.995

10

23.995

35

23.998

60

23.985

85

23.991

11

23.990

36

24.000

61

23.987

86

23.991

12

23.989

37

23.992

62

23.985

87

23.989

13

23.995

38

23.991

63

23.993

88

23.988

14

23.989

39

23.988

64

23.991

89

23.995

15

23.998

40

23.991

65

24.000

90

23.990

16

23.995

41

24.000

66

23.998

91

23.997

17

23.991

42

23.992

67

23.991

92

23.998

18

23.995

43

23.984

68

23.993

93

23.997

19

23.991

44

24.996

69

23.991

94

24.001

20

23.990

45

23.992

70

23.989

95

24.005

21

23.999

46

23.988

71

23.990

96

23.990

22

23.997

47

23.992

72

23.997

97

23.995

23

23.979

48

23.992

73

23.992

98

23.992

24

23.995

49

24.001

74

23.989

99

23.991

25

23.992

50

23.987

75

23.998

100

23.991

组界

中心值

xi

频数

mi

频率

fi

xi-

(xi-

)2

(xi-

)2mi

1

23.9775—23.9805

23.979

1

1

-0.0160

0.000256

0.00026

2

23.9805—23.9835

23.982

0

0

-0.0130

0.000169

0

3

23.9835-23.9865

23.985

5

5

-0.0100

0.0001

0.0005

4

23.9865—23.9895

23.988

15

15

-0.0070

4.9E-05

0.00074

5

23.9895—23.9925

23.991

35

35

-0.0040

1.6E-05

0.00056

6

23.9925—23.9955

23.994

21

21

-0.0010

1E-06

0.00002

7

23.9955—23.9985

23.997

13

13

0.0020

4E-06

0.00005

8

23.9985—24.0015

24.000

9

9

0.0050

2.5E-05

0.00023

9

24.0015—24.0045

24.003

0

0

0.0080

6.4E-05

0

10

24.0045—24.0075

24.006

1

1

0.0110

0.000121

0.00012

11

12

13

14

15

16

17

18

=0.026,

=23.995

=0.0157

表1-4实际分布曲线图(直图)

表1-5

-R控制图数据

样组号

平均值

极差

样组号

平均值

极差

样组号

平均值

极差

R

R

R

1

23.9943

0.007

10

23.9905

0.004

19

23.9935

0.009

2

23.9928

0.008

11

23.993

0.016

20

23.9935

0.006

3

23.991

0.006

12

23.991

0.004

21

23.99625

0.012

4

23.99425

0.009

13

23.99325

0.014

22

23.98975

0.003

5

23.99175

0.005

14

23.99075

0.003

23

23.995

0.008

6

23.9925

0.02

15

23.99

0.015

24

23.99825

0.015

7

23.9905

0.007

16

23.989

0.008

25

23.99225

0.004

8

23.9925

0.012

17

23.9955

0.009

 

 

组序

R

-R控制图

5.实验结果总结

1.本工序的实验分布曲线图是否接近正态分布曲线?

为什么?

答:

本工序的实验分布曲线图接近正态分布曲线

2.根据工序能力系数Cp,本工序属哪一级?

如果出现了废品,试分析产生废品的原因

答:

σ=0.0157mm

T=0.02mm  

=0.1308

所以:

工序等级属于四级  

工件要求最大尺寸:

=24.01mm ,最小尺寸 

=23.99mm

可能出现的最大尺寸

=x+3δ=23.995+3*0.0157=24.0421mm   

     最小尺寸

=x-3δ=23.995-3*0.0157=23.9479mm  

所以

>

会出现可修复的废品,

<

会出现不可修复废品。

原因:

①可修复废品原因:

刀具进给量不足

②不可修复废品原因:

进刀量过大

3.从图看,本工序的工艺过程稳定吗?

如果不稳定,试分析其原因。

答:

图上可以看出,

点不在中心线

附近波动,有连续多个的点出现在中心线上侧或下侧,说明分布中心不稳定,有明显的变值系统误差影响;

原因:

刀具热变形及刀具尺寸磨损

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 初中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1