反应动力学方法.docx

上传人:b****5 文档编号:24837740 上传时间:2023-06-02 格式:DOCX 页数:23 大小:31.71KB
下载 相关 举报
反应动力学方法.docx_第1页
第1页 / 共23页
反应动力学方法.docx_第2页
第2页 / 共23页
反应动力学方法.docx_第3页
第3页 / 共23页
反应动力学方法.docx_第4页
第4页 / 共23页
反应动力学方法.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

反应动力学方法.docx

《反应动力学方法.docx》由会员分享,可在线阅读,更多相关《反应动力学方法.docx(23页珍藏版)》请在冰豆网上搜索。

反应动力学方法.docx

反应动力学方法

热分析动力学

基本方程

对于常见的固相反应来说,其反应方程可以表示为

A(s),B(s)C(g)

(1)

其反应速度可以用两种不同形式的方程表示:

d。

微分形式kf(>)

(2)

dt

积分形式G(>)=kt(3)

式中:

a一一t时物质A已反应的分数;

t时间;

k-一反应速率常数;

f(a)反应机理函数的微分形式;

G(a反应机理函数的积分形式。

由于f⑷和G(a)分别为机理函数的微分形式和积分形式,它们之间的尖系

为:

11

(4)

fC)

G'2)d[G(o)]/do

k与反应温度T(绝对温度)之间的尖系可用著名的Arrhenius方程表示:

(5)

k二Aexp(-E/RT)

式A—表观指前因子;

中:

E表观活化能;

R—通用气体常

方程

(2)〜(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下矢系式:

T=Topt(6)

即:

dT/dt二(3

式中:

To——DSC曲线偏离基线的始点温度(K);

3加热速率(K•minO°

于是可以分别得到:

非均相体系在等温与非等温条件下的两个常用动力学方程式:

J/dr=Aexp(・E/RT)f(a)

dAfG)exp(-E/RT)

dT3

(等温丿

(非等温)

(7)

(8)

 

动力学研究的目的就在于求解出能描述某反应的上述方程中的

对于反应过程的DSC曲线如图所示。

在DSC分析中,a值等于H/H。

这里Ht为物质A'在某时刻的反应热,相当于DSC曲线下的部分面积,H。

为反应完成后物质A'的总放热量,相当于DSC曲线下的总面积。

微分法

2.1Achar'Brindley和Sharp法:

对方程dAfC)exp(・E/RT)进行变换得方程:

dT(3

(3d:

Aexp(-E/RT)(9)

f(:

)dT

对该两边直接取对数有:

3d°E

InInA(10)

f(:

)dTRT

由式(11)可以看出,方程两边成线性尖系。

通过试探不同的反应机理函数、不同温度T时的分解百分数,进行线性回归分析,就可以试解出相应的反应活化能E、指前因子A和机理函数f(a).

2.2Kissinger法

Kissinger在动力学方程时,假设反应机理函数为的动力学方程表示为:

n

fQ\=门,柏甫

y■_E/RT

Ae(11)

dt

该方程描绘了一条相应的热分析曲线,对方程(12)两边微分,得

E/RTn

dd:

nde-ertcI(1r)

_l——厂|A(1_□)+Ae”—•

A(1

E/RT

.E/RT

RT

dt

dt

d-

EdT

_E/rt

-Aen(1

dt

FTRdt

dt

-dT

1

p

1

d:

Idt

•n

1

(⑵

1

And-J

e

dt

RT

1

在热分析曲线的峰顶处,其一阶导数为零,即边界条件为:

T=Tp(13)

dd:

—J|=0(14)

dt-dt

将上述边界条件代入(13)式有:

dT

E—

Htn1E/RT

-An(1_□p)_e_(15)

RT

Kissinger研究后认为「1_宀)心与B无尖,其值近似等于1,因此,从方程

(16)可变换为:

RT

(16)

对方程(15)两边取对数,得方程(18),也即Kissinger方程:

In

E1

i=l,2,,,4

EkRT.

(17)

方程(18)表明,In成线性尖系,将二者作图可以得到一条直

2

「丿TPi

线,从直线斜率求E,从截距求九,其线性相尖性一般在0.9以上2.3两点法

Kissinger法是在有假定条件下得到的简化方程。

如果我们不作任何假设,只

是利用数学的方法进行,可以得到两点法。

由方程

(2)=(5)知

 

二Ae町C)dt

方程(19)两边对T微分,得这相当于对DSC曲线求二阶导,为的是求DSC曲线的拐点。

在DSC曲线的拐点处,我们有边界条件:

a

dl—

dt

dT

AfC)e_E

E/RT

)e「

(19)

RT

当T二Tp时‘反应速率达到最大,

a=a从边界条件有:

a

dl

dt

dT

丁寺,□北

我们得到第一个方程:

(20)

方程(20)两边对T微分,得

d:

_Idt

dT

_E/RTA

Af(:

)e—f

IB

3AE

BRT

E/RT

()e

22

A

—fHC)fC)eni

B

罟E-2ERT

•V

RT

d件]

dt

dT

将该条件代入方程(22)

,从而得到第二个方程

氏2聋3AE

f.RrO_E/RT.

2H)ejf()e+

BRT

E-2EBT„i

fH(-)fC)e—=o(22)

RT.

联立方程(21)和(22),即得到只与反应温度T、机理函数f(0有尖的方

程如下:

2RTi

1

2EUE

丫[E,f(:

)1=(BCD)e24

RT,

E

EeA

式中:

f:

mR2T『

r.T

i

RTT

通过解方程就可求出非等温反应动力学参数E和A的值。

在该方法中,只需要知道升温速率B,拐点的温度Ti、分解百分数a,峰顶的温度£、分解百分数術,就可以试算不同的f(a)以求解出对应于该f(a)时的活化能E值、指前因子A值。

二积分法

对于积分法)G(>)二航

则由方程(8)求积分得

ad.At

At

GC)

二Toexp(-E/RT)dT二

°exp(-E/RT)dT

f(a)3

3

AE□-eAE

AEe"

2dup(u)=

(u)(23)

(3Ru3R

3Ru

式中:

p(u)

exp(-u)

(u);

u

E

u二

RT

对P(u)的不同处理)构成了一系列的积分法方程’其中最著名的方法和方

程如下:

3.1Ozawa法

通过对方程(23)变换5得Ozawa公式:

(AEn

loap=loa1

IRG©)J

-2.315-0.4567

E

RT

(24)

方程(24)中的E,可用以下两种方法求得。

方法1:

由于不同Pi下各热谱峰顶温度皿处各“值近似相等,因此可用

1

“logp・・・・"成线性尖系来确定E值。

令:

T

今logp

—1/TP(i二12I.)

Ea二04567—R

AE

b=log2.315

RG©)

这样由式(24)得线性方程组

乙二ayb(i=1,2,丄)

解此方程组求出a,从而得E值。

Ozawa法避开了反应机理函数的选择而直接求出E值,与其它方法相比,它避免了因反应机理函数的假设不同而可能带来的误差。

因此往往被其它学者用来检验由他们假设反应机理函数的方法求出的活化能值,这是Ozawa法的一个

突出优点。

3・2Phadnis法

TE/RT

E

_u2

RTE/RT

edT

P.(u)

e_

式中P.(u)二

u

2

u

GC)fC):

2

RTd«

EdT

(25)

 

2da

该方程由Phadnis等人提出。

对于合适的机理函数,G)f(?

)与T

成线性

dT

尖系,由此求出E值,但无法求出A值。

3.3Coats-Redfem近似式

取方程(23)右端括号内崩一项,得一级近似的第一种表达式

Coats-Redfern近似式

E/RTE

Ee.<

2H

E,u-2

€dT

P(u)二211

=e-

1

R

RuI

u

R

Vu丿

2

(26)

RT2RT

_E/RT

式中:

Pcr(U)

n

并设f(〉)二(「)5右

2RT

-E/RT

当”时,屛一也孚

1T2(1-n)-

—(27)

RT

—ln(1〜)

-AR(

InM1

(28)

RT

E(2RT

由于对一般的反应温区和大部分的E值而言,・>〉1511・一・•

RTIE丿

1

对一作

T

E

—(对

R

方程(4・4)和(4・5)右端第一项几乎都是常数,当心时,|n1一*八厂

-T(1・n)

图,而甘时,ln_ln(i)

1

对一作图,都能得到一条直线,其斜率为

T

正确的n值而言)。

3.4MacCallum-Tanner近似式

该法无需对P(u)作近似处理,可以证明,对于一定的E值」logp(u)与1/T为线性尖系,并可表达为:

a

■logp(u)=u_

_T

而且,E对a也是线性尖系,可表达为:

a=ybE

于是有

V+bE

-logp(u)二u

T

虽然u对E不是线性尖系,但是logu对logE是线性尖系,即:

logu二logAcIogE

于是有

y+bE

-logp(u)二AE

T

0.4490.217E

0.001T

借助于附录A中列出的logp(u)~u表计算出相应的常数后,代入上式,得:

0.4357

-logPmt(u)二0.4828E

0.4828E

0.4357

0.449-0.217E|>

0.001T

Pmt(U)=10

式中:

E活化能‘kcal/mol

上述方程称MacCallum-Tanner近似式。

4・计算结果判据

提出的选择合理动力学参数及最可几机理函数的五条判据是:

(1)用普适积分方程和微分方程求得的动力学参数E和A值应在材料热分解反应动力学参数值的正常范围内,即活化能E值在80-250kJ-mol1之间,指前因子的对数(IgA/L)值在7~30之间;

(2)用微分法和积分法计算结果的线性相矣系数要大于0.98;

(3)用微分法和积分法计算结果的标准偏差应小于0.3;

(4)根据上述原则选择的机理函数f(a)应与研究对象的状态相符;

(5)与两点法、Kissinger法、Ozawa法和其它微积分法求得的动力学参数值应尽量一致。

函数号函数名称

抛物线法则

Valensi方程

机理

一维扩散」D,Di减速a形a-t曲线二维扩散,园柱形对鳥:

-?

)称D2,减速形a-t曲线

枳分形式G

In

I-In(1

:

•).F

Jander方程

Jander方程

二维扩散,2D,n=1

2

二维扩散,2D,n=2

Jander方程

Jander方程

三维扩散,3D,nJ

2

1

12

G-B方程

(*)

三维扩散,球形对

称,

3D,D3,减速形a

曲线,n=2

-t

-1

1

(1

>)3

3(1

(1

2

三维扩散,球形对称,3D,D4,减速形a曲线

反Jander方程三维扩散,3D

(—

1

(1

函数号函数名称

机理

3

(1:

:

匕)3-1

积分形式G匕心微分形式f

9

Z.-L.-T•方程

(**)

三维扩散,3D

-1f

(1■:

)3-1

3

2

4

1U3

3

1

(1・「)

10

Avrami-Erofee

随机成核和随后生长5

A4»

1

4

(1

3

•Tn(1・V)I4

-)Lin

(1-)14

V方程

1

S形a・t曲线,n

m=4

11

Avrami-Erofee

随机成核和随后生长,

A3,

1

3

(1・〉)

2

Lin(1・:

Lin(1・「)卩

v方程

1

■)

I3

S形a・t曲线,n二

m=3

12

Avrami-Erofee

随机成核和随后生长,

2

Lin(1■:

)L

5

(1-r>

3

|・In(1・「)

v方程

2

L

2n一

13

Avrami-Erofee

5

A2,

1

2

(1

1

賄和我楼和賄后牛%,

Lin(1・「)L

・「)

Lin(1・「)L

v方程

1

S形a・t曲线

2

n,m=2

14

Avrami-Erofee

随机成核和随后生长5

2

1-ln(1-:

■)I3

》一:

・)丨一:

B,P

v方程

2

2ln(1

n=—

15

Avrami-Erofee

3

4(1_P)_1

随机成核和随后生长,

1-ln(1<■)r3

n(1

v方程

3n二——

A

A

3

16

Mample单行

随机成核和随后生长,假设

-ln(1-■)

1-Ct

法则,一级

每个颗粒上只有一个核心,

Ai,Fi,S形a-t曲线,n=1

m=1

17

Avrami-E

随机成核和随后生长,

1/43

2(1_:

・)l_

1-ln(1

ln(1•:

ji-2

rofeev方程

3

3

n二一

函数号

函数名称

机理

积分形式G

7、

微分形式f(a)

18

Avrami-Erofeev

随机成核和随后生长5n=2

Lln(1

■■■)A

—(1■:

•)Lln(1■:

・).F

方程

2

19

Avrami-Erofeev

随机成核和随后生长,J3

Lln(1

<-户

-(1T.:

)Lln(1—r:

J尸

方程

3

20

Avrami-Erofeev

随机成核和随后生长…=4

—n(1

-?

)r

丄(1■:

•)l_ln(1・?

)F

方程

4

21

P.-T方程(十)

自催化反应,枝状成核,Au,

In

-1

Bi(S形a・t曲线)

H1

22

MampelPower法

1

n—.*

1

3

4-4

则(幕函数法则)

4

23

MampelPower法

1

n_.*

1

-3

2

3川3

则(幕函数法则)

3

24

MampelPower法

1n二

1

-2

1

2用2

则(幕函数法则)

2

25

MampelPower法相边界反应(一维),Ri,n=1

1・(1・

1

:

-)1-?

1

则(幕函数法则)

26

MampelPower法

3n=—

3

•工2

2丿

_・・2

则(幕函数法则)

2

3

27

MampelPower法

n=2

•£2

1

1

则(幕函数法则)

2

续表

28

反应级数

1n=—

4

1-(1

1

.:

.)4

4(1—:

•)

29

收缩球状(体积)相边界反应,球形对称,R3,

1

1-(1

1

-?

)3

2

3(1A)3

减速形a-t曲线,n=

31・

1

(1一:

2

(1-a)3

30

■>

n=3(三维)

L

J

1

31

收缩园柱体

(面相边界反应,园柱形对称,

1

1

2

积)

R2,减速形a-t曲线,

1-(1

-?

)2

1

2(1・:

•)

1

32

n,n=2(二维)2

21・

(1~b:

(1-

33

反应级数

1-(1

-:

)2

1

(1

w、

34

反应级数

n=3

1-d

・:

)3

1

(1-r)

3

35

反应级数

n=4

1-(1

・:

)4

1

36

二级

化学反应,円,减速形a・t曲线

(1-:

4

37

反应级数

化学反应

(1)」

_1

(1-:

)2

38

2/3级

化学反应

(1

1

)2

3

2

(1)2

39

指数法则

.'加速形a4曲线

In:

a

40

指数法则

n=2

In:

2

1—a

2

续表

函数号

函数名称

机理

积分形式G(a)

微分形式f(a)

41

三级

化学反应,Fa,减速形a

(17—)_L

1

(1-)3

-1曲线

2

42

S-B方程”卄)

固相分解反应SB(m)

jm([_r)n

43

反应级数

化学反应,RO(n),

1・(1■二)2

(1_:

)•

1

R

J-n

1—n

44

J-M-A方程

)随机成核和随后生长,An,

1-ln(1-?

)i/n

1

n(1■:

)M-ln(1・>)1n

JMA(n)

45

幕函数法则

Pi,加殊型a-1曲线

用1/n

n(:

.)⑵巾

*,Ginstling-Brounstein方程

**,Zhuralev-Lesokin-Tempelman方程

***,Prout-Tompkins方程

****,?

estok-Berggren方程

*****,Johnson-Mehl-Avrami方程

注:

函数No・1和27称谓不同,形式相同

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1