中考数学复习考点解密 第二讲 操作设计型问题.docx
《中考数学复习考点解密 第二讲 操作设计型问题.docx》由会员分享,可在线阅读,更多相关《中考数学复习考点解密 第二讲 操作设计型问题.docx(11页珍藏版)》请在冰豆网上搜索。
中考数学复习考点解密第二讲操作设计型问题
中考数学复习考点解密第二讲操作设计型问题
【专题诠释】
操作设计型中考题是指与设计几何图案有关的问题,它把代数计算与几何作图融为一体,新颖独特,是中考试题中一道亮丽的风景.这类问题格调清新,不但有利于考查学生的识图能力、计算能力、动手操作能力和空间想象能力,而且能够充分体现义务教育阶段《数学课程标准(修订稿)》倡导的“学生的数学学习内容应当是现实的、有意义的、富有挑战性的”新课程理念.
【解题策略】
平移、轴对称、旋转、位似等图形变换知识是解决图案设计型问题的重要理论工具.因此,要想圆满地解答这类问题,必须要掌握几种图形变换的相关知识。
解决图案设计类问题,关键是要学会自觉地运用平移、轴对称、旋转、位似等图形变换知识去观察、分析、抽象、概括所给的实际问题,揭示其数学本质,使实际问题转化为我们熟悉的数学问题,从而达到问题的解决.
【解法精讲】
对于操作性设计问题,主要出现两种,一是给出设计好的图案,让考生指出图案的特征或求出图案的性质;二是让考生利用图形的变换知识设计出和谐、丰富、美观的几何图形.
【考点精讲】
考点一:
辨别图案的对称类型
这类中考题,给出设计好的图案,让考生辨别它是平移变换图形、轴对称图形、中心对称图形和位似变换图形中的哪一种图形或哪几种图形.这类题通常以选择题的形式出现,属于基础题.
例1(2017哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
【考点】R5:
中心对称图形;P3:
轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:
A、是轴对称图形,不是中心对称图形,不合题意;
B、是轴对称图形,不是中心对称图形,不合题意;
C、不是轴对称图形,是中心对称图形,不合题意;
D、是轴对称图形,也是中心对称图形,符合题意.
故选:
D.
考点二:
判断图案变换后的位置
这类中考题,题面提供一个图案,给出变换的条件,要求考生根据心智操作活动来变换图案,并判断出图案的最终位置.这类题在中考试卷中通常是以选择题和填空题的形式出现,属于中等题.
例2(2017四川眉山)△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是 120° .
【考点】R3:
旋转对称图形.
【分析】根据旋转的性质及等边三角形的性质求解.
【解答】解:
若△ABC以O为旋转中心,旋转后能与原来的图形重合,
根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.
故答案为:
120°.
考点三:
探求设计的图案性质
这一类中考题,通常是先描述一个图案的设计过程,然后让我们根据图案的设计过程来探求它蕴涵的数学性质.这类试题一般难度不太大,但具有一定的综合性,属于中等难度题.
例3(2017广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图
(2)操作:
将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 .
【考点】PB:
翻折变换(折叠问题);LB:
矩形的性质.
【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.
【解答】解:
如图3中,连接AH.
由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,
∴AH===,
故答案为.
【评析】解决此类问题首先要弄清图案设计的过程,明白它是经过怎样的图形变换得到的,然后根据变换前后图形的形状、大小、位置关系及发生变化的规律来解决问题.
在操作活动中展开探究,是一种基本的、也是重要的研究问题的方法,它越来越受到中考命题者的青睐.
考点四:
利用变换设计图案
所谓设计图案,就是让考生利用图形的平移、对称、旋转、位似等变换知识来设计和谐、丰富、美观的组合图形.这类试题综合性较强,题型以作图题为主,具有一定的开放性和灵活性,此类问题近年来倍受中考命题者的崇拜.
例4(2017黑龙江鹤岗)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣1,3),B(﹣3,1),C(﹣1,1).请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出B1的坐标.
(2)画出△A1B1C1绕点C1顺时针旋转90°后得到的△A2B2C1,并求出点A1走过的路径长.
【考点】R8:
作图﹣旋转变换;O4:
轨迹;P7:
作图﹣轴对称变换.
【分析】
(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据弧长公式列式计算即可得解.
【解答】解:
(1)如图,B1(3,1);
(2)如图,A1走过的路径长:
×2×π×2=π
四.真题演练
1.(2017.江苏宿迁)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是( )
A.y=(x+2)2+1B.y=(x+2)2﹣1C.y=(x﹣2)2+1D.y=(x﹣2)2﹣1
【考点】:
二次函数图象与几何变换.
【分析】由抛物线平移不改变y的值,根据平移口诀“左加右减,上加下减”可知移动后的顶点坐标,再由顶点式可求移动后的函数表达式.
【解答】解:
将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是y=(x﹣2)2+1.
故选B.
2.(2017浙江湖州)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )
A.B.C.D.
【考点】IM:
七巧板.
【分析】解答此题要熟悉七巧板的结构:
五个等腰直角三角形,有大、小两对全等三角形;一个正方形;一个平行四边形,根据这些图形的性质便可解答.
【解答】解:
图C中根据图7、图4和图形不符合,故不是由原图这副七巧板拼成的.故选C
3.(2017内江)如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A.(,)B.(2,)C.(,)D.(,3﹣)
【考点】PB:
翻折变换(折叠问题);D5:
坐标与图形性质;LB:
矩形的性质.
【分析】根据翻折变换的性质结合锐角三角函数关系得出对应线段长,进而得出D点坐标.
【解答】解:
∵四边形AOBC是矩形,∠ABO=30°,点B的坐标为(0,3),
∴AC=OB=3,∠CAB=30°,
∴BC=AC•tan30°=3×=3,
∵将△ABC沿AB所在直线对折后,点C落在点D处,
∴∠BAD=30°,AD=3,
过点D作DM⊥x轴于点M,
∵∠CAB=∠BAD=30°,
∴∠DAM=30°,
∴DM=AD=,
∴AM=3×cos30°=,
∴MO=﹣3=,
∴点D的坐标为(,).
故选:
A.
4.(2017宁夏)在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).
(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2B2C2.
【分析】
(1)根据图形平移的性质画出平移后得的△A1B1C1即可;
(2)根据图形旋转的性质画出旋转后的△A2B2C2即可.
【解答】解:
(1)如图,△A1B1C1即为所求;
(2)如图,△A2B2C2即为所求.
【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.
5.(2017黑龙江鹤岗)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:
则有AC=BD,AC⊥BD.
旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?
(直接写出)
若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?
写出结论并证明.
【考点】LE:
正方形的性质;KD:
全等三角形的判定与性质;L8:
菱形的性质;R2:
旋转的性质.
【分析】图2:
根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;
图3:
根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=OA,OD=OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=AC′,于是得到结论.
【解答】解:
图2结论:
AC′=BD′,AC′⊥BD′,
理由:
∵四边形ABCD是正方形,
∴AO=OC,BO=OD,AC⊥BD,
∵将Rt△COD旋转得到Rt△C′OD′,
∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,
∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,
在△AOC′与△BOD′中,,
∴△AOC′≌△BOD′,
∴AC′=BD′,∠OAC′=∠OBD′,
∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,
∴∠O′AC′+∠AO′D′=90°,
∴AC′⊥BD′;
图3结论:
BD′=AC′,AC′⊥BD’
理由:
∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO,
∵∠ABC=60°,
∴∠ABO=30°,
∴OB=OA,OD=OC,
∵将Rt△COD旋转得到Rt△C′OD′,
∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,
∴OD′=OC′,∠AOC′=∠BOD′,
∴=,
∴△AOC′∽△BOD′,
∴==,∠OAC′=∠OBD′,
∴BD′=AC′,
∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,
∴∠O′AC′+∠AO′D′=90°,
∴AC′⊥BD′.
6.(2017.江苏宿迁)如图,在矩形纸片ABCD中,已知AB=1,BC=,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′.
(1)当B′C′恰好经过点D时(如图1),求线段CE的长;
(2)若B′C′分别交边AD,CD于点F,G,且∠DAE=22.5°(如图2),求△DFG的面积;
(3)在点E从点C移动到点D的过程中,求点C′运动的路径长.
【考点】LO:
四边形综合题.
【分析】
(1)如图1中,设CE=EC′=x,则DE=1﹣x,由△ADB′′∽△DEC,可得=,列出方程即可解决问题;
(2)如图2中,首先证明△ADB′,△DFG都是等腰直角三角形,求出DF即可解决问题;
(3)如图3中,点C的运动路径的长为的长,求出圆心角、半径即可解决问题.
【解答】解:
(1)如图1中,设CE=EC′=x,则DE=1﹣x,
∵∠ADB′+∠EDC′=90°,∠B′AD+∠ADB′=90°,
∴∠B′AD=∠EDC′,
∵∠B′=∠C′=90°,AB′=AB=1,AD=,
∴DB′==,
∴△ADB′′∽△DEC,
∴=,
∴=,
∴x=﹣2.
∴CE=﹣2.
(2)如图2中,
∵∠BAD=∠B′=∠D=90°,∠DAE=22.5°,
∴∠EAB=∠EAB′=67.5°,