模拟滤波器及IIR数字滤波器的设计.docx

上传人:b****1 文档编号:2407075 上传时间:2022-10-29 格式:DOCX 页数:12 大小:139.44KB
下载 相关 举报
模拟滤波器及IIR数字滤波器的设计.docx_第1页
第1页 / 共12页
模拟滤波器及IIR数字滤波器的设计.docx_第2页
第2页 / 共12页
模拟滤波器及IIR数字滤波器的设计.docx_第3页
第3页 / 共12页
模拟滤波器及IIR数字滤波器的设计.docx_第4页
第4页 / 共12页
模拟滤波器及IIR数字滤波器的设计.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

模拟滤波器及IIR数字滤波器的设计.docx

《模拟滤波器及IIR数字滤波器的设计.docx》由会员分享,可在线阅读,更多相关《模拟滤波器及IIR数字滤波器的设计.docx(12页珍藏版)》请在冰豆网上搜索。

模拟滤波器及IIR数字滤波器的设计.docx

模拟滤波器及IIR数字滤波器的设计

实验三模拟滤波器及IIR数字滤波器的设计

一、模拟滤波器的设计

1.设计一个巴特沃斯模拟低通滤

波器,以满足:

通带截止频率fP=5H乙通带最大衰减

=2dB,阻带截止频率fs二12Hz,阻带最小衰减:

&二30dB。

要求绘出滤波器的

幅频特性曲线。

(幅度用分贝值表示)

理论分析:

[N,Wn]=buttord(Wp,Ws,Rp,Rs,'s')

其屮,参数Wp和Ws分别是通带边界频率和阻带边界频率,Wp和Ws的单位是rad/so

Rp和Rs分别为通带最大衰减和阻带最小衰减(dB)o返回的参数N和Wn分别为滤波器的

阶数和3dB截止频率。

对于带通和带阻滤波器,Wp和Ws都是二维向量,向量的第一个元

素对应低端的边界频率,第二个元素对应高端的边界频率。

[B,A]=butter(N,Wn,'s')

其中,N和Wn分别为滤波器的阶数和3dB截止频率。

利用此函数可以获得低通和带

通滤波器系统函数的分子多项式(B)和分母多项式(A)的系数。

H=freqs(B,A,w)

其屮,B和A分别表示滤波器系统函数的分子多项式和分母多项式的系数。

该函数返

回矢量w指定的那些频率点上的频率响应,w的单位是rad/so不带输出变量的freqs函数,将绘制出幅频和相频曲线。

源程序:

wp=2*pi*5;

ws二2*pi*12;

rs=30;

[N,Wn]=buttord(wp,ws,rp,rs,'s');

[B,A]二butter(N,Wn,'s');

w=0:

300;

h=freqs(B,A,w);

H=20*logl0(abs(h));

plot(w,H);

titleC巴特沃斯低通滤波器的幅频特性,);

xlabel(*频率/Hl);

ylabelC巾国度/db');

实验结果:

-20-

-30-b-10

幅-50一

一80一

^HV«H^MHB

050

2.

频率fp二20Hz,通带最大衰减

100150200250300

频率/Hz

设计一个巴特沃斯模拟高通滤波器,以满足:

通带截止

:

-p=3dB,阻带截止频率fs二10Hz,阻带最小衰减〉s二15dB。

要求绘出滤波器的

幅频特性曲线。

(幅度用分贝值表示)

理论分析:

[N,Wn]=buttord(Wp,Ws,Rp,Rs,'s')

其中,参数Wp和Ws分别是通带边界频率和阻带边界频率,Wp和Ws的单位是rad/so

Rp和Rs分别为通带最大衰减和阻带最小衰减(dB)。

返回的参数N和Wn分别为滤波器的

阶数和3dB截止频率。

对于带通和带阻滤波器,Wp和Ws都是二维向量,向量的第一个元

素对应低端的边界频率,第二个元素对应高端的边界频率。

[B,A]=butter(N,Wn,'high',‘s')

可以获得高通滤波器系统函数的分子多项式(B)和分母多项式(A)的系数。

H二freqs(B,A,w)

其中,B和A分别表示滤波器系统函数的分子多项式和分母多项式的系数。

该函数返

回矢量w指定的那些频率点上的频率响应,w的单位是rad/so不带输出变量的freqs函数,

将绘制出幅频和相频曲线。

源程序:

wp=2*pi*20;

ws=2*pi*10;

rp=3;

rs=15;

[N,WnJ=buttord(wp,ws,rp,rs,'s');

[B,A]=butter(N,Wn,'high's');

w二0:

400;

h=freqs(B,A,w)

H=20*logl0(abs(h));

plot(w,H);

titleC巴特沃斯高通滤波器的幅频特性,);

xlabelC频率/Hz');

ylabel(*幅度/db');

实验结果:

巴特沃斯高通滤波器的幅频特性

50100

150200

250

300350

400

频率/Hz

_20

一40

幅-80

-120

-140

3.设计一个巴特沃斯模拟带通滤波

器,以满足:

通带范围为10Hz-25Hz,阻带截止频率

分别为5Hz、30Hz,通带最大衰减为3dB,阻带最小衰减为30dB。

要求绘出滤波器的

幅频特性曲线。

(幅度用分贝值表示)

理论分析:

[N,Wn]=buttord(Wp,Ws,Rp,Rs,'s')

其屮,参数Wp和Ws分别是通带边界频率和阻带边界频率,Wp和Ws的单位是rad/so

Rp和Rs分别为通带最大衰减和阻带最小衰减(dB)o返回的参数N和Wn分别为滤波器的

阶数和3dB截止频率。

对于带通和带阻滤波器,Wp和Ws都是二维向量,向量的第一个元素对应

低端的边界频率,第二个元素对应高端的边界频率。

[B,A]=butter(N,Wn,'s')

其屮,N和Wn分别为滤波器的阶数和3dB截止频率。

利用此函数可以获得低通和带

通滤波器系统函数的分子多项式(B)和分母多项式(A)的系数。

H二freqs(B,A,w)

其屮,B和A分別表示滤波器系统函数的分子多项式和分母多项式的系数。

该函数返回矢量w指

定的那些频率点上的频率响应,w的单位是rad/so不带输出变量的freqs函数,

将绘制出幅频和相频曲线。

源程序:

wp=[2*pi*102*pi*25];

ws=[2*pi*52*pi*30];

rs=30;

[N,WnJ=buttord(wp,ws,rp,rs,'s');

[B,A]二butter(N,Wn,'s');

w=0:

1000;

h=freqs(B,A,w);

H=20*logl0(abs(h));

plot(w,H);

titleC巴特沃斯带通滤波器的幅频特性•);

xlabelC频率/Hz');

01002003004005006007008009001000

频率/Hz

ylabel(*巾吊度/db');

实验结果:

50

0

-50

・100

•150

度-200

・250

・300

・350

・400

■450

4.设计一个巴特沃斯模拟带阻滤波器,以满足:

通带截止频率分别为10HZ、35HZ,阻带

截止频率分别为15HZ、30HZ,通带最大衰减为3dB,阻带最小衰减为30dB。

要求绘出滤波器的幅频特性曲线。

(幅度用分贝值表示)

理论分析:

[N,Wn]=buttord(Wp,Ws,Rp,Rs,'s')

其屮,参数Wp和Ws分别是通带边界频率和阻带边界频率,Wp和Ws的单位是rad/soRp

和Rs分别为通带最大衰减和阻带最小衰减(dB)o返回的参数N和Wn分别为滤波器的

阶数和3dB截止频率。

对于带通和带阻滤波器,Wp和Ws都是二维向量,向量的第一个元素对应低端的边界频率,第二个元素对应高端的边界频率。

[B,A]=butter(N,Wn,'stop',,s')

可以获得带阻滤波器系统函数的分子多项式(B)和分母多项式(A)的系数。

H二freqs(B,A,w)

其屮,B和A分别表示滤波器系统函数的分子多项式和分母多项式的系数。

该函数返回矢量w指定的那些频率点上的频率响应,w的单位是rad/so不带输出变量的freqs函数,

将绘制出幅频和相频曲线。

源程序:

wp=[2*pi*102*pi*35];

ws=[2*pi*152*pi*30];

rp=3;

rs=30;

[N,Wn]二buttord(wp,ws,rp,rs,'s');LB,A]=butter(N,Wn,'stop*s');w二0:

400;

h=freqs(B,A,w);

H=20*logl0(abs(h));

plot(w,H);

titleC巴特沃斯带阻滤波器的幅频特性,);

xlabelC频率/Hz');

ylabel(*幅度/db');

实验结果:

-150

-200

-250|:

—300•1■L■—

050100150200250300350400

频率/Hz

、用脉冲响应不变法和双线性变换法设计IIR数字滤波器

1.要求分别用脉冲响应不变法和双线性变换法设计一个数字低通滤波器,以满足:

通带截

止频率为0.2二,阻带截止频率为0.3二,通带最大衰减为ldB,阻带最小衰减为15dB,采样间隔设为1S。

理论分析:

[N,Wn]=buttord(Wp,Ws,Rp,Rs,'s')

其屮,参数Wp和Ws分别是通带边界频率和阻带边界频率,Wp和Ws的单位是rad/so

Rp和Rs分别为通带最大衰减和阻带最小衰减(dB)。

返回的参数N和Wn分别为滤波器的

阶数和3dB截止频率。

对于带通和带阻滤波器,Wp和Ws都是二维向量,向量的第一个元

素对应低端的边界频率,第二个元素对应高端的边界频率。

[B,A]=butter(N,Wn,'s')

其屮,N和Wn分别为滤波器的阶数和3dB截止频率。

利用此函数可以获得低通和带

通滤波器系统函数的分子多项式(B)和分母多项式(A)的系数。

[bz,az]=impinvar(b,a,Fs)

可以实现用脉冲响应不变法将模拟滤波器转换为数字滤波器。

其屮b和a分别是模拟滤

Fs是脉冲响应不变法屮的采样频

波器的系统函数H(s)的分子多项式和分母多项式的系数,率,单位为Hz,如果Fs没有说明,其缺省值为lHzo运算的结果bz和az分别表示数字滤

波器的系统函数H(z)的分子多项式和分母多项式的系数。

[bz,az]=bilinear(b,a,Fs)

可以实现用双线性变换法将模拟滤波器转换为数字滤波器。

参数含义同上。

利用f“qz函数计算

数字滤波器的频率响应

源程序:

wp二0・2*pi;

ws=0.3*pi;

rs二15;

Fs=l;

[N,Wn]二buttord(wp,ws,rp,rs,'s');

[B,A]=butter(N,Wn,'s');

lbz,az]=impinvar(B,A,Fs);

[h,w]=freqz(bz,az);plot(w/pif20*logl0(abs(h)));

titleC数字低通滤波器的幅频特性,);

xlabel(*频率-/Hz');

ylabel(*巾曷度/db');

实验结果:

数字低通滤波器的幅频特性

0

-30

度“°幅

-50

-80

0

0.1

0.2

0.3

0.4

0.50.6

频率/Hz

0.7

0.8

0.9

1

源程序:

wp=0.2*pi;

ws=O.3*pi;

rp=l;

rs=15;

Fs=l;

[N,Wn]=buttordUp,ws,rp,rs,'s');

[B,A]=butter(N,Wn,'s');

[bz,az]=bilinear(B,A,Fs);

lh,w]=freqz(bz,az);

plot(w/pi,20*logl0(abs(h)));

titleC数字低通滤波器的幅频特性,);

xlabel(*频率•/Hz');

ylab

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 面试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1