建筑专业英语21511.docx
《建筑专业英语21511.docx》由会员分享,可在线阅读,更多相关《建筑专业英语21511.docx(52页珍藏版)》请在冰豆网上搜索。
建筑专业英语21511
UNITONE
TextIntroductiontoMechanicsofMaterials
1.Mechanicsofmaterialsisabranchofappliedmechanicsthatdealswiththebehaviorofsolidbodiessubjectedtovarioustypesofloading。
Itisafieldofstudythatisknownbyavariety
ofnames,including“strengthofmaterials”and“mechanicsofdeformablebodies。
”The
solidbodiesconsideredinthisbookincludeaxially-loadedbars,shafts,beams,andcolumns,
aswellasstructuresthatareassembliesofthesecomponents。
Usuallytheobjectiveofouranalysiswillbethedeterminationofthestresses,strains,anddeformationsproducedbytheloads:
ifthesequantitiescanbefoundforallvaluesofloaduptothefailureload,thenwewillhaveobtainedacompletepictureofthemechanicalbehaviorofthebody.
2Theoreticalanalysesandexperimentalresultshaveequallyimportantrolesinthestudy
ofmechanicsofmaterials。
Onmanyoccasionswewillmakelogicalderivationstoobtainformulasandequationsforpredictingmechanicalbehavior,butatthesametimewemustrecognizethattheseformulascannotbeusedinarealisticwayunlesscertainpropertiesofthematerialareknown.Thesepropertiesareavailabletousonlyaftersuitableexperimentshavebeenmadeinthelaboratory。
Also,manyproblemsofimportanceinengineeringcannotbehandledefficientlybytheoreticalmeans,andexperimentalmeasurementsbecomeapracticalnecessity.Thehistoricaldevelopmentofmechanicsofmaterialsisafascinatingblendofboththeoryandexperiment,withexperi1nentspointingthewaytousefulresultsinsomeinstancesandwiththeorydoingsoinothers.SuchfamousmenasLeonardodaVinci(1452—1519)and
Galileo(1564—1642)madeexperimentstodeterminethestrengthofwires,bars,andbeams,
althoughtheydidnotdevelopanyadequatetheories(bytoday’sstandards)toexplaintheir
testresults.Bycontrast,thefamousmathematicianLeonhardEuler(1707—1783)developedthemathematicaltheoryofcolumnsandcalculatedthecriticalloadofacolumnin1744,longbeforeanyexperimentalevidenceexistedtoshowthesignificanceofhisresults.Thus,Euler’stheoreticalresultsremainedunusedformanyyears,althoughtodaytheyformthebasisofcolumntheory.
3Theimportanceofcombiningtheoreticalderivationswithexperimentallydetermined
propertiesofmaterialswillbeevidentasweproceedwithourstudyofthesubject。
Inthisarticlewewillbeginbydiscussingsomefundamentalconcepts,suchasstressandstrain,andthenwewillinvestigatethebehaviorofsimplestructuralelementssubjectedtotension,compression,andshear.
4Theconceptsofstressandstraincanbeillustratedinanelementarywaybyconsideringtheextensionofaprismaticbar(seeFig1-1a).Aprismaticbarisonethathasconstantcrosssectionthroughoutitslengthandastraightaxis。
Inthisillustrationthebarisassumedtobe1oadedatitsendsbyaxialforcesPthatproduceauniformstretching,ortension,ofthebar,Bymakinganartificialcutthroughthebaratrightangletoitsaxis,wecanisolatepartofthebarasafreebody,Attheright-handendthetensileforcePisapplied,andattheotherthereareforcesrepresentingtheactionoftheremovedportionofthebaruponthepartthatremains.Theseforcesw⒒lbecontinuouslydistributedoverthecrosssection,analogoustothecontinuousdistributionofhydrostaticpressureoverasubmergedsurface。
Theintensityofforce,thatis,theforceperunitarea,iscalledthestressandiscommonlydenotedbytheGreekletterσ。
Assumingthatthestresshasauniformdistributionoverthecrosssection(seeFig.1-1b),wecanreadilyseethatitsresultantisequaltotheintensityσtimesthecross-sectionalarea'Aofthebar。
Furthermore,fromtheequilibriumofthebodyshowninFig.1-1b,wecanalsoseethatthisresultantmustbeequalinmagnitudeandoppositeindirectiontotheforceP,Hence,weobtainastheequationfortheuniformstressinaprismaticbar,Thisequationshowsthatstresshasunitsofforcedividedbyarea——forexample,poundspersquareinch(psi)orkipspersquareinch(ksi).WhenthebarisbeingstretchedbytheforceP,asshowninthefigure,theresultingstressisatensilestress;iftheforcesarereversedindirection,causingthebartobecompressed,theyarecalledcompressivestresses。
5AnecessaryconditionforEq(1-1)tobevalidisthatthestressσmustbeuniformoverthecrosssectionofthebar,ThisconditionwillberealizediftheaxialforcePactsthroughthe
centroidofthecrosssection,ascanbedemonstratedbystatics.WhentheloadPdoesnotactatthecentroid,bendingofthebarwillresult,andamorecomplicatedanalysisisnecessary。
Throughoutthisbook,however,itisassumedthatallaxialforcesareappliedatthecentroidofthecrosssectionunlessspecificallystatedtothecontrary,Also,unlessstatedotherwise,itisgenerallyassumedthattheweightoftheobjectitselfisneglected,aswasdonewhendiscussingthebarinFig。
1-1。
6.ThetotalelongationofabarcarryinganaxialforcewillbedenotedbytheGreekletterε(seeFig.1-1a),andtheelongationperunitlength,orstrain,isthendeterΠ1inedbytheequationwhereListhetotallengthofthebar。
NotethatthestrainCisanondimensionalquantity,ItcanbeobtainedaccuratelyfromEq。
(1~2)asIongasthestrainisuniformthroughoutthelengthofthebar。
Ifthebarisintension,thestrainisatensilestrain,representinganelongationorstretchingofthematerial;ifthebarisincompression,thestrainisacompressivestrain,whichmeansthatadjacentcrosssectionsofthebarmoveclosertooneanother。
NewWordsandExpressions
(be)subjectedto承受,经受deformable可变形的axially轴向地
shaft轴,杆状物derivation推导realistic现实的,实际的
fascinate迷住,强烈吸引blend混合,融合prismatic等截面的
tensile拉力的,拉伸的sectional截面的,部分的hydrostatic静力学的
analogous类似的analogousto类似于submerged浸在水中的
uniform均匀的denote指示,表示equilibrium平衡
resu1tant合力magnitude大小,尺寸equation方程
kip千磅tensile拉力的compressive压力的,压缩的
centroid矩心,形心specifically具体地,特定地elongation伸长,拉长
nondimensional无量纲的adjacent相邻的
UNITTWO
TextTheTensileTest
[1]Therelationshipbetweenstressandstraininaparticularmaterialisdeterminedbymeansofatensiletest.Aspecimenofthematerial,usuallyintheformofaroundbar,isplacedinatesting1nachineandsubjectedtotension。
'Γheforceonthebarandtheelongationo£thebararemeasuredastheloadisincreased.Thestressinthebarisfoundbydividingtheforcebythecross-sectionalarea,andthestrainisfoundbydividingtheelongationbythelengthalongwhichtheelongationoccurs。
Inthis1nanneraCompletestress-straindiagran1canbeobtainedforthematerial。
[2]Thetypicalshapeofthestress-straindiagramforstructuralsteelisshowninFig.2-1(a),wheretheaxialstrainsareplottedonthehorizontalaxisandthecorrespondingstressesaregivenbytheordinatestotheCurveOABCDE.FromOtoAthestressandstrainaredirectlyproportionaltooneanotherandthediagramislinear.Beyondpoint'⒋the1inearrelationshipbetweenstressandtrainnolongerexists;hencethestressatz⒋iscalledtheproportionallimit.Forlow-carbon(structural)steels,thislimitisusuallybetween30,000psi,and36,000psi,butforhigh-strengthsteelsitmaybemuchgreater。
Withanincreaseinloading,thestrainincreasesmorerapidlythanthestress,untilatpointBaconsiderableelongationbeginstooccurwithnoappreciableincreaseinthetensileforce。
Thisphenomenonisknownasyieldingofthematerial,andthestressatpointBiscal1edtheyieldpointoryieldstress。
IntheregionBCthematerialissaidtohavebecomeplastic,andthebarmayactuallyelongateplasticallybyanamountwhichisto10or15timestheelongationwhichoccursuptotheproportionallimit。
AtpointCthematerialbeginstostrainhardenandtoofferadditionalresistancetoincreaseinload。
Thus,withfurtherelongationthestressincreases,anditreachesitsmaximumvalue,orultimatestress,atpointD。
Beyondthispointfurtherstretchingofthebarisaccompaniedbyareductionintheload,andfractureofthespecimenfinallyoccursatpointEonthediagram。
[3]Duringelongationofthebaralateralcontractionoccurs,resultinginadecreaseinthecross-sectionalareaofthebar。
Thisphenomenonhasnoeffectonthestress-straindiagramup
toaboutpointC,butbeyondthatpointthedecreaseinareawillhaveanoticeableeffectupon
thecalculatedvalueofstress。
Apronouncedneckingofthebaroccurs(seeFig。
2-2),andifthe
actualcross-sectionalareaatthenarrowpartoftheneckisusedincalculatingσ,itwillbefoundthatthetruestress-strainCurvefollowstheashedlineCE。
Whereasthetotalloadthebarcancarrydoesindeeddiminishaftertheultimatestressisreached(⒒neDE),thisreductionisduetothedecreaseinareaandnottoalossinstrengthofthematerialitself。
Thematerialactuallywithstandsanincreaseinstressuptothepointoffailure。
Formostpracticalpurposes,however,theconventionalstress-straincurveo⒕BCDE,basedupontheoriginalcross-sectionalareaofthespecimen,providessatisfactoryinformationfordesignpurposes。
[4]ThediagraminFig。
2-1(a)hasbeendrawntoshowthegeneralcharacteristicsofthestress-straincurveforsteel,butitsproportionsarenotrealisticbecause,asalreadymentioned,
thestrainwhichoccursfromBtoCmaybe15timesasgreatasthestrainoccurringfromOto
A.Also,thestrainsfromCtoEareevengreaterthanthosefromBtoC.AdiagramdrawninproperproportionsisshowninFig。
2-1(b)。
InthisfigurethestrainsfromCtoAareso
SmallincomparisontothestrainsfromAtoEthattheycannotbeseen,andthel