高速铁路牵引供电系统组成精选.docx

上传人:b****2 文档编号:2245107 上传时间:2022-10-28 格式:DOCX 页数:9 大小:46.73KB
下载 相关 举报
高速铁路牵引供电系统组成精选.docx_第1页
第1页 / 共9页
高速铁路牵引供电系统组成精选.docx_第2页
第2页 / 共9页
高速铁路牵引供电系统组成精选.docx_第3页
第3页 / 共9页
高速铁路牵引供电系统组成精选.docx_第4页
第4页 / 共9页
高速铁路牵引供电系统组成精选.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

高速铁路牵引供电系统组成精选.docx

《高速铁路牵引供电系统组成精选.docx》由会员分享,可在线阅读,更多相关《高速铁路牵引供电系统组成精选.docx(9页珍藏版)》请在冰豆网上搜索。

高速铁路牵引供电系统组成精选.docx

高速铁路牵引供电系统组成精选

高速铁路牵引供电系统

电气化铁路的组成

由于电力机车本身不带原动机,需要靠外部电力系统经过牵引供电装置供给其电能,故电气化铁路是由电力机车和牵引供电系统组成的。

牵引供电系统主要由牵引变电所和接触网两部分组成,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的三大元件。

一、电力机车

(一)工作原理

电力机车靠其顶部升起的受电弓和接触网接触获取电能。

电力机车顶部都有受电弓,由司机控制其升降。

受电弓升起时,紧贴接触网线摩擦滑行,将电能引入机车,经机车主断路器到机车主变压器,主变压器降压后,经供电装置供给牵引电动机,牵引电动机通过传动机构使电力机车运行。

(二)组成部分

电力机车由机械部分(包括车体和转向架)、电气部分和空气管路系统构成。

车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电力机车大部分机械及电气设备都安装在车体内,它也是机车乘务员的工作场所。

转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械装置。

它的上部支持着车体,它的下部轮对与铁路轨道接触。

电气部分包括机车主电路、辅助电路和控制电路形成的全部电气设备,在机车上占的比重最大,除安装在转向架中的牵引电机之外,其余均安装在车顶、车内、车下和司机室内。

空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动机和管路等组成

(三)分类

干线电力牵引中,按照供电电流制分为:

直流制电力机车和交流制电力机车和多流制电力机车。

交流机车又分为单相低频电力机车(25Hz或162/3Hz)和单相工频(50Hz)电力机车。

单相工频电力机车,又可分为交--直传动电力机车和交—直—交传动电力机车。

二、牵引变电所

牵引变电所的主要任务是将电力系统输送来的110kV三相交流电变换为27.5(或55)kV单相电,然后以单相供电方式经馈电线送至接触网上,电压变化由牵引变压器完成。

电力系统的三相交流电改变为单相,是通过牵引变压器的电气接线来实现的。

牵引变电所通常设置两台变压器,采用双电源供电。

以提高供电的可靠性。

变压器的接线方式目前采用的有三相Yd11接线,单相V/V接线,单相接线以及三相-两相斯科特变压器。

牵引变电所还设置有串联和并联的电容补偿装置,用以改善供电系统的电能质量,减少牵引负荷对电力系统和通信线路的影响。

三、牵引供电回路

电力牵引供变电系统是指从电力系统接受电能,通过变压,变相后,向电力机车供电的系统。

牵引供电回路是由牵引变电所、馈电线、接触网、电力机车、钢轨、地或回流线构成。

另外还有分区亭、开闭所、自耦变压器站等。

 

(一)开闭所(SSP)

电力牵引系统中的开闭所,实际上是起配电作用的开关站开闭所就是高压开关站,实际上从严格意义上讲是“高压配电”站,仅仅起配电作用,实现环网供电、双路互投等功能。

当枢纽地区的供电,分为“由里向外供”和“由外向里供”两种方式,前者在枢纽内设置牵引变电所。

后者在枢纽内不设牵引变电所,为了增加枢纽地区供电的可靠性和缩小事故的影响范围,一般设开闭所。

AT供电方式时,供电臂较长,在供电臂中部也设开闭所。

开闭所应有来自不同牵引变电所的(单线区段)或同一牵引变电所的不同馈线段(复线区段)的两回进线。

开闭所应尽量设置在枢纽地区的负荷中心处,以减少馈线的长度和馈线与接触网的交叉干扰。

(二)分区亭(SP)

为了增加供电的灵活性,提高运行的可靠性,在两个牵引变电所的供电区间常加设分区亭。

分区亭常用于牵引网为双边供电,或复线区段牵引网为单边供电,但上下行接触网在末端并联时。

这时,分区亭起到平时将两个供电臂或上下行接触网联络起来的作用,这样,当事故发生时,可缩小停电范围和实现越区供电。

(三)自耦变压器站

电力牵引供电系统如采用自耦变压器供电方式时,在沿线每隔10-15公里设置一台自耦变压器。

设置时尽量将自耦变压器设于沿铁路的各站场上。

同时,尽量与分区亭、开闭所合并,以便于运行管理。

(四)牵引网

牵引网是由馈线、钢轨回流线、接触网组成的双导线供电系统,完成对电力机车的送电任务。

BT供电方式时,还要有回流线。

AT供电供电方式时,还有正馈线和保护线。

馈线:

接在牵引变电所牵引母线和接触网之间的导线,即将电能由牵引变电所引向电气化铁路。

接触网:

一种特殊的输电线,架设在铁路上方,机车受电弓与其磨擦受电。

回流线:

牵引变电所处的横向回流线,它将轨或与轨平行的其它导线与牵引变压器指定端子相联。

分相绝缘器(电分相):

串在接触网上,目的是把两相不同的供电区分开,并使机车光滑过渡,主要用在牵引变电所出口处和分区处。

分段绝缘器(电分段):

分为纵向电分段和横向电分段,前者用线路接触网上,后者用于站场各条接触网之间。

通过其上的隔离开关将有关接触网进行电气连通或断开,以保证供电的可靠性、灵活性和缩小停电范围等。

供电分区:

正常供电时,由牵引变电所馈线到接触网末端的一段供电线路,也称为供电区。

电气化铁路的供电方式

一、电力系统对牵引变电所的供电方式

电力系统向牵引变电所供电的方式可分为单电源供电,双电源供电和混合供电。

当同一电气化区段有不同那个的电力系统功能供电时,在牵引网的分界处,应设置分相电分段而不应并联。

牵引变电所设置两台变压器,它要求双电源供电。

 

1.牵引变电所

一、牵引变电所高压进线的主接线方案

(一)牵引变电所主接线的要求

1、牵引变压器的接线方式不同,对主接线的影响较大。

2、在满足可靠性的情况下,应尽量采用简单的接线形式,一般一双T接线为主。

3、双T接线虽然要求双回路进线,但可根据电气化铁路的重要程度和运量大小而采用手动投入或自动投入备用回路。

当变电所的双回路进线中,主回路发生故障时,备用回路应投入。

当采用手动投入时,将有一段停电时间(几数分钟到几十分钟),但可使主接线简化,考虑到110kV线路故障率较低,而且220kV及更高系统逐步形成之情况下,这种接线方式得到了普遍应用。

4、对于重要电气化区段,可采用自动投入或双回路主供。

5、接触网的故障率较高,要求27.5kV侧馈线断路器能承受较高的跳闸次数或有足够的备用。

(二)单母线分段接线

1、单母线分段接线

当牵引变电所除了110kV两回电源引入线外,还有别的引出线的时候,通常采用此种方式。

正常运行时,分段断路器闭合,两母线并列运行,电源回路和同一负荷的馈线应交错连接在不同的分段母线上,分段断路器既能通过穿越功率,又可在必要的时候将母线分成两段,这样,当母线检修时,停电范围可缩小一半;母线故障时,分段断路器自动跳闸,将故障段母线断开,非故障段母线及其线路仍照常工作,仅使故障段母线连接的线路停电。

单母线分段的接线,广泛用于城市电牵引变电所和110Kv电源进线回路较少的电牵引供电系统。

2、单母线带旁路母线接线

单母线分段的接线虽然有上述优点,但是,还是存在断路器检修或故障时将使有关回路停电的缺陷,为此,增设一组旁路母线,组成带旁路母线的单母线接线即可解决这一矛盾。

(三)桥型接线

当110Kv侧有两回进线且需要穿越功率时,采用桥型接线。

1、内桥接线

内桥接线中带有隔离开关构成的外跨条,作为检修桥断路器时旁路用。

该接线的特点是线路中有一回故障,不影响供电。

但变压器故障时,造成线路中断。

考虑到变压器故障率比进线故障少,因此这种接线可加强牵引负荷供电的可靠性而对电力系统不会带来多大影响,目前采用较多。

由于解裂变压器也会造成线路中断,所以如需经常操作主变压器的场合,不宜采用内桥接线。

2、外桥接线

该接线的特点是变压器故障不影响线路,变压器的投入和切除方便,线路穿越功率只经过桥断路器,但线路故障时影响一台变压器的供电,这种接线往往用于电力系统中比较重要的系统联络线上。

 

(四)双T接线

双T接线是目前采用比较普遍的一种接线方式,它在变电所要求两回进线时采用。

一般情况下,其中一回引自电源点的专用间隔,另一回进线可从电力系统的各供电线路上连接。

双T接线比上述两种接线形式都简单,双回进线都在供电要求不高的场合,采用一回助攻,另一回备用。

若两回进线都能作主供回路,并能作为互为备用,则可消去外跨条,使接线更为简单。

在供电要求高的场合,应优先采用两回进线都能作为主供的方案。

 

二、

第五节高速铁路牵引供电系统介绍

由于电力机车功率大,拉的多,跑的快,世界各国的高速铁路几乎都采用电力机车牵引。

电力机车与蒸汽机车和内燃机车不同,它本身不带能源,必须由外部供应电能。

为了给电力机车供应电能,需要在铁路沿线架设一套牵引供电系统。

高速铁路的牵引供电系统,与常速铁路的牵引供电系统不同,它的供电能力和供电可靠性必须满足高速列车运行的要求。

自1964年10月1日,日本建成世界上第一条高速铁路以来,经过几十年的实践和发展,各国高速铁路的牵引供电系统都有了很大的改进,达到了很高的水平,而且都各具特色。

最具有代表性的是日本、法国和德国高速铁路的牵引供电系统。

高速铁路的牵引供电系统主要包括牵引供电和接触网两大部分。

下面就其采用的主要技术标准做一简单的介绍。

1.牵引供电部分

(1)牵引供电方式:

高速铁路要求接触网受流质过高,分段和分相点数量少。

目前各国大多采用自耦变压器(AT)供电方式和带回线的直接(RT)供电方式。

自耦变压器(AT)供电方式是每隔10km左右在接触网与正馈线之间并联接入一台自耦变压器,其中性点与钢轨相连。

自耦变压器将牵引网的供电电压提高一倍,而供给电力机车的电压仍为25kV,如图所示。

带回线的直接(RT)供电方式是在接触网支柱上架设一条与钢轨并联的回流线,如图所示,利用接触网与回流线之间的互感作用,使钢轨中的电流尽可能地由回流线流回牵引变电所,因而能部分抵消接触网对邻近通信线路的干扰。

 

自耦变压器(AT)供电方式

 

带回线的直接(RT)供电方式

日本、法国采用AT供电方式;德国、意大利和西班牙采用RT供电方式。

AT供电方式的优点是:

供电质量高,变电所数量少,便于牵引变电所选址和电力部门的配合,牵引变电所间距大、分相点少。

因此,便于高速列车运行,防干扰效果也好。

我国京沪高速铁路牵引供电优先采用2×25kV(AT)供电方式。

(2)电源电压等级:

高速铁路负荷电流大,对电力系统的不平衡影响也大。

为了减少对电力系统的影响,高速铁路一般都采用较高的电源电压。

日本采用154kV、220kV和275kV三种电压等级,法国采用225kV电压等级,德国采用110kV电压等级,意大利采用130kV电压等级,西班牙采用132kV和220kV两种电压等级。

(3)接触网电压:

接触网的电压对电力机车功率发挥及机车运行速度有很大影响,而且直接关系到牵引供电设备技术参数的选定和供电系统的工程投资,各国都非常重视这一技术标准。

日本接触网的标准电压为25kV,最高电压为30kV,最低电压为22.5kV。

法国分别为25kV、27.5kV和18kV。

德国分别为15kV、17kV和12kV。

西班牙分别为25kV、27.5kV和19kV。

意大利采用直流供电,分别为3kV、3.6kV和2kV。

我国京沪高速铁路接触网的标称电压为25kV,长期最高电压拟定为27.5kV,短时(5min)最高电压为29kV,设计最低工作电压为20kV。

(4)牵引变压器接线形式:

牵引变压器是牵引供电系统中最重要的设备。

它对牵引供电系统和工程投资起决定性的影响,不同类型的牵引变压器对电力系统产生不同的不平衡影响。

日本采用斯科特接线和变形伍德桥接线三相变压器。

法国、德国、意大利和西班牙采用单相变位器。

单相变压器的优点是变压器容量大、利用率高、经济效果好,最适合在高速铁路上应用。

我国京沪高速铁路应优先采用单相变压器。

(5)牵引变电所继电保护和自动控制装置:

日本、法国、德国及西班牙高速铁路的牵引变电所均按无人值班设计,采用运动装置在电力调度中心监控。

牵引变电所的继电保护和自动控制系

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1