人教版化学必修二知识点归纳总结文档格式.docx
《人教版化学必修二知识点归纳总结文档格式.docx》由会员分享,可在线阅读,更多相关《人教版化学必修二知识点归纳总结文档格式.docx(29页珍藏版)》请在冰豆网上搜索。
18Ar
(1)电子排布
电子层数相同,最外层电子数依次增加
(2)原子半径
原子半径依次减小
—
(3)主要化合价
+1
+2
+3
+4
-4
+5
-3
+6
-2
+7
-1
(4)金属性、非金属性
金属性减弱,非金属性增加
(5)单质与水或酸置换难易
冷水
剧烈
热水与
酸快
与酸反
应慢
——
(6)氢化物的化学式
SiH4
PH3
H2S
HCl
(7)与H2化合的难易
由难到易
(8)氢化物的稳定性
稳定性增强
(9)最高价氧化物的化学式
Na2O
MgO
Al2O3
SiO2
P2O5
SO3
Cl2O7
最高价氧化物对应水化物
(10)化学式
NaOH
Mg(OH)2
Al(OH)3
H2SiO3
H3PO4
H2SO4
HClO4
(11)酸碱性
强碱
中强碱
两性氢
氧化物
弱酸
中强
酸
强酸
很强
的酸
(12)变化规律
碱性减弱,酸性增强
第ⅠA族碱金属元素:
LiNaKRbCsFr(Fr是金属性最强的元素,位于周期表左下方)
第ⅦA族卤族元素:
FClBrIAt(F是非金属性最强的元素,位于周期表右上方)
★判断元素金属性和非金属性强弱的方法:
(1)金属性强(弱)——①单质与水或酸反应生成氢气容易(难);
②氢氧化物碱性强(弱);
③相互置换反应(强制弱)Fe+CuSO4=FeSO4+Cu。
(2)非金属性强(弱)——①单质与氢气易(难)反应;
②生成的氢化物稳定(不稳定);
③最高价氧化物的水化物(含氧酸)酸性强(弱);
④相互置换反应(强制弱)2NaBr+Cl2=2NaCl+Br2。
(Ⅰ)同周期比较:
金属性:
Na>Mg>Al
与酸或水反应:
从易→难
碱性:
NaOH>Mg(OH)2>Al(OH)3
非金属性:
Si<P<S<Cl
单质与氢气反应:
从难→易
氢化物稳定性:
SiH4<PH3<H2S<HCl
酸性(含氧酸):
H2SiO3<H3PO4<H2SO4<HClO4
(Ⅱ)同主族比较:
Li<Na<K<Rb<Cs(碱金属元素)
LiOH<NaOH<KOH<RbOH<CsOH
F>Cl>Br>I(卤族元素)
氢化物稳定:
HF>HCl>HBr>HI
(Ⅲ)
Li<Na<K<Rb<Cs
还原性(失电子能力):
氧化性(得电子能力):
Li+>Na+>K+>Rb+>Cs+
F>Cl>Br>I
氧化性:
F2>Cl2>Br2>I2
还原性:
F-<Cl-<Br-<I-
酸性(无氧酸):
HF<HCl<HBr<HI
比较粒子(包括原子、离子)半径的方法(“三看”):
(1)先比较电子层数,电子层数多的半径大。
(2)电子层数相同时,再比较核电荷数,核电荷数多的半径反而小。
元素周期表的应用
1、元素周期表中共有个7周期,3是短周期,4是长周期。
2、在元素周期表中,ⅠA-ⅦA是主族元素,主族和0族由短周期元素、长周期元素共同组成。
ⅠB-ⅦB是副族元素,副族元素完全由长周期元素构成。
3、元素所在的周期序数=电子层数,主族元素所在的族序数=最外层电子数,元素周期表是元素周期律的具体表现形式。
在同一周期中,从左到右,随着核电荷数的递增,原子半径逐渐减小,原子核对核外电子的吸引能力逐渐增强,元素的金属性逐渐减弱,非金属性逐渐增强。
在同一主族中,从上到下,随着核电荷数的递增,原子半径逐渐增大,电子层数逐渐增多,原子核对外层电子的吸引能力逐渐减弱,元素的金属性逐渐增强,非金属性逐渐减弱。
4、元素的结构决定了元素在周期表中的位置,元素在周期表中位置的反映了原子的结构和元素的性质特点。
我们可以根据元素在周期表中的位置,推测元素的结构,预测元素的性质。
元素周期表中位置相近的元素性质相似,人们可以借助元素周期表研究合成有特定性质的新物质。
例如,在金属和非金属的分界线附近寻找半导体材料,在过渡元素中寻找各种优良的催化剂和耐高温、耐腐蚀材料。
第二单元微粒之间的相互作用
化学键是直接相邻两个或多个原子或离子间强烈的相互作用。
1.离子键与共价键的比较
键型
离子键
共价键
概念
阴阳离子结合成化合物的静电作用叫离子键
原子之间通过共用电子对所形成的相互作用叫做共价键
成键方式
通过得失电子达到稳定结构
通过形成共用电子对达到稳定结构
成键粒子
阴、阳离子
原子
成键元素
活泼金属与活泼非金属元素之间(特殊:
NH4Cl、NH4NO3等铵盐只由非金属元素组成,但含有离子键)
非金属元素之间
离子化合物:
由离子键构成的化合物叫做离子化合物。
(一定有离子键,可能有共价键)
共价化合物:
原子间通过共用电子对形成分子的化合物叫做共价化合物。
(只有共价键一定没有离子键)
极性共价键(简称极性键):
由不同种原子形成,A-B型,如,H-Cl。
非极性共价键(简称非极性键):
由同种原子形成,A-A型,如,Cl-Cl。
2.电子式:
用电子式表示离子键形成的物质的结构与表示共价键形成的物质的结构的不同点:
(1)电荷:
用电子式表示离子键形成的物质的结构需标出阳离子和阴离子的电荷;
而表示共价键形成的物质的结构不能标电荷。
(2)[](方括号):
离子键形成的物质中的阴离子需用方括号括起来,而共价键形成的物质中不能用方括号。
3、分子间作用力定义把分子聚集在一起的作用力。
由分子构成的物质,分子间作用力是影响物质的熔沸点和溶解性的重要因素之一。
4、水具有特殊的物理性质是由于水分子中存在一种被称为氢键的分子间作用力。
水分子间的氢键,是一个水分子中的氢原子与另一个水分子中的氧原子间所形成的分子间作用力,这种作用力使得水分子间作用力增加,因此水具有较高的熔沸点。
其他一些能形成氢键的分子有HFH2ONH3。
项目
共价键?
?
阴阳之间的强烈相互作用
原子通过共用电子对形成的强烈相互作用
形成化合物
离子化合物
判断化学键方法
形成晶体
离子晶体
分子晶体
原子晶体
判断晶体方法
熔沸点
高
低
很高
融化时破坏作用力
物理变化分子间作用力化学变化共价键
硬度导电性
第三单元从微观结构看物质的多样性
同系物
同位素
同分异构体
组成相似,结构上相差一个或多个“CH2”原子团的有机物
质子数相同中子属不同的原子互成称同位素
分子式相同结构不同的化合物
研究
对象
有机化合物之间
原子之间
化合物之间
相似点
结构相似通式相同
质子数相同
分子式相同
不同点
相差n个CH2原子团(n≥1)
中子数不同
原子排列不同
代表物
烷烃之间
氕、氘、氚
乙醇与二甲醚
正丁烷与异丁烷
专题二化学反应与能量变化
第一单元化学反应的速率与反应限度
1、化学反应的速率
(1)概念:
化学反应速率通常用单位时间内反应物浓度的减少量或生成物浓度的增加量(均取正值)来表示。
计算公式:
v(B)=
=
①单位:
mol/(L·
s)或mol/(L·
min)
②B为溶液或气体,若B为固体或纯液体不计算速率。
③以上所表示的是平均速率,而不是瞬时速率。
④重要规律:
(i)速率比=方程式系数比(ii)变化量比=方程式系数比
(2)影响化学反应速率的因素:
内因:
由参加反应的物质的结构和性质决定的(主要因素)。
外因:
①温度:
升高温度,增大速率
②催化剂:
一般加快反应速率(正催化剂)
③浓度:
增加C反应物的浓度,增大速率(溶液或气体才有浓度可言)
④压强:
增大压强,增大速率(适用于有气体参加的反应)
⑤其它因素:
如光(射线)、固体的表面积(颗粒大小)、反应物的状态(溶剂)、原电池等也会改变化学反应速率。
2、化学反应的限度——化学平衡
(1)在一定条件下,当一个可逆反应进行到正向反应速率与逆向反应速率相等时,反应物和生成物的浓度不再改变,达到表面上静止的一种“平衡状态”,这就是这个反应所能达到的限度,即化学平衡状态。
化学平衡的移动受到温度、反应物浓度、压强等因素的影响。
催化剂只改变化学反应速率,对化学平衡无影响。
在相同的条件下同时向正、逆两个反应方向进行的反应叫做可逆反应。
通常把由反应物向生成物进行的反应叫做正反应。
而由生成物向反应物进行的反应叫做逆反应。
在任何可逆反应中,正方应进行的同时,逆反应也在进行。
可逆反应不能进行到底,即是说可逆反应无论进行到何种程度,任何物质(反应物和生成物)的物质的量都不可能为0。
(2)化学平衡状态的特征:
逆、动、等、定、变。
①逆:
化学平衡研究的对象是可逆反应。
②动:
动态平衡,达到平衡状态时,正逆反应仍在不断进行。
③等:
达到平衡状态时,正方应速率和逆反应速率相等,但不等于0。
即v正=v逆≠0。
④定:
达到平衡状态时,各组分的浓度保持不变,各组成成分的含量保持一定。
⑤变:
当条件变化时,原平衡被破坏,在新的条件下会重新建立新的平衡。
(3)判断化学平衡状态的标志:
①VA(正方向)=VA(逆方向)或nA(消耗)=nA(生成)(不同方向同一物质比较)
②各组分浓度保持不变或百分含量不变
③借助颜色不变判断(有一种物质是有颜色的)
④总物质的量或总体积或总压强或平均相对分子质量不变(前提:
反应前后气体的总物质的量不相等的反应适用,即如对于反应xA+yB
zC,x+y≠z)
第二单元化学反应中的热量
1、在任何的化学反应中总伴有能量的变化。
原因:
当物质发生化学反应时,断开反应物中的化学键要吸收能量,而形成生成物中的化学键要放出能量。
化学键的断裂和形成是化学反应中能量变化的主要原因。
一个确定的化学反应在发生过程中是吸收能量还是放出能量,决定于反应物的总能量与生成物的总能量的相对大小。
E反应物总能量>E生成物总能量,为放热反应。
E反应物总能量<E生成物总能量,为吸热反应。
2、常见的放热反应和吸热反应
☆常见的放热反应:
①所有的燃烧与缓慢氧化②酸碱中和反应
③大多数的化合反应④金属与酸的反应
⑤生石灰和水反应(特殊:
C+CO2
2CO是吸热反应)⑥浓硫酸稀释、氢氧化钠固体溶解等
☆常见的吸热反应:
①铵盐和碱的反应
如Ba(OH)2·
8H2O+NH4Cl=BaCl2+2NH3↑+10H2O
②大多数分解反应如KClO3、KMnO4、CaCO3的分解等
③以H2、CO、C为还原剂的氧化还原反应
如:
C(s)+H2O(g)
CO(g)+H2(g)。
④大多数分解反应如KClO3、KMnO4、CaCO3的分解等。
铵盐溶解等
3.产生原因:
化学键断裂——吸热化学键形成——放热
放出热量的化学反应。
(放热>
吸热)△H为“-”或△H<
吸收热量的化学反应。
(吸热>
放热)△H为“+”或△H>
4、放热反应、吸热反应与键能、能量的关系
放热反应:
∑E(反应物)>∑E(生成物)
其实质是,反应物断键吸收的能量<生成物成键释放的能量,。
可理解为,由于放出热量,整个体系能量降低
吸热反应:
∑E(反应物)<∑E(生成物)
其实质是:
反应物断键吸收的能量>生成物成键释放的能量,。
可理解为,由于吸收热量,整个体系能量升高。
3、能源的分类:
形成条件
利用历史
性质
一次能源
常规能源
可再生资源
水能、风能、生物质能
不可再生资源
煤、石油、天然气等化石能源
新能源
太阳能、风能、地热能、潮汐能、氢能、沼气
核能
二次能源
(一次能源经过加工、转化得到的能源称为二次能源)
电能(水电、火电、核电)、蒸汽、工业余热、酒精、汽油、焦炭等
[思考]一般说来,大多数化合反应是放热反应,大多数分解反应是吸热反应,放热反应都不需要加热,吸热反应都需要加热,这种说法对吗?
试举例说明。
点拔:
这种说法不对。
如C+O2=CO2的反应是放热反应,但需要加热,只是反应开始后不再需要加热,反应放出的热量可以使反应继续下去。
Ba(OH)2·
8H2O与NH4Cl的反应是吸热反应,但反应并不需要加热。
第三单元化学能与电能的转化
原电池:
1、概念:
将化学能转化为电能的装置叫做原电池
2、组成条件:
①两个活泼性不同的电极②电解质溶液③电极用导线相连并插入电解液构成闭合回路④某一电极与电解质溶液发生氧化还原反应
原电池的工作原理:
通过氧化还原反应(有电子的转移)把化学能转变为电能。
3、电子流向:
外电路:
负极—→导线—→正极
内电路:
盐桥中阴离子移向负极的电解质溶液,盐桥中阳离子移向正极的电解质溶液。
电流方向:
正极—→导线—→负极
(4)电极名称及发生的反应:
负极:
较活泼的金属作负极,负极发生氧化反应,
电极反应式:
较活泼金属-ne-=金属阳离子
负极现象:
负极溶解,负极质量减少。
正极:
较不活泼的金属或石墨作正极,正极发生还原反应,
溶液中阳离子+ne-=单质
正极的现象:
一般有气体放出或正极质量增加。
4、电极反应:
以锌铜原电池为例:
氧化反应:
Zn-2e=Zn2+(较活泼金属)较活泼的金属作负极,负极发生氧化反应,电极反应式:
较活泼金属-ne-=金属阳离子负极现象:
还原反应:
2H++2e=H2↑(较不活泼金属)较不活泼的金属或石墨作正极,正极发生还原反应,电极反应式:
溶液中阳离子+ne-=单质,正极的现象:
总反应式:
Zn+2H+=Zn2++H2↑
5、正、负极的判断:
(1)从电极材料:
一般较活泼金属为负极;
或金属为负极,非金属为正极。
(2)从电子的流动方向负极流入正极
(3)从电流方向正极流入负极
(4)根据电解质溶液内离子的移动方向阳离子流向正极,阴离子流向负极
(5)根据实验现象①溶解的一极为负极②增重或有气泡一极为正极
6、原电池电极反应的书写方法:
(i)原电池反应所依托的化学反应原理是氧化还原反应,负极反应是氧化反应,正极反应是还原反应。
因此书写电极反应的方法归纳如下:
①写出总反应方程式。
②把总反应根据电子得失情况,分成氧化反应、还原反应。
③氧化反应在负极发生,还原反应在正极发生,反应物和生成物对号入座,注意酸碱介质和水等参与反应。
(ii)原电池的总反应式一般把正极和负极反应式相加而得。
7、原电池的应用:
①加快化学反应速率,如粗锌制氢气速率比纯锌制氢气快。
②比较金属活动性强弱。
③设计原电池。
④金属的腐蚀。
化学电池:
1、电池的分类:
化学电池、太阳能电池、原子能电池
2、化学电池:
借助于化学能直接转变为电能的装置
3、化学电池的分类:
一次电池、二次电池、燃料电池
一次电池
1、常见一次电池:
碱性锌锰电池、锌银电池、锂电池等
二次电池
1、二次电池:
放电后可以再充电使活性物质获得再生,可以多次重复使用,又叫充电电池或蓄电池。
2、电极反应:
铅蓄电池
放电:
负极(铅):
Pb+
-2e?
=PbSO4↓
正极(氧化铅):
PbO2+4H++
+2e?
=PbSO4↓+2H2O
充电:
阴极:
PbSO4+2H2O-2e?
=PbO2+4H++
阳极:
PbSO4+2e?
=Pb+
两式可以写成一个可逆反应:
PbO2+Pb+2H2SO42PbSO4↓+2H2O
3\目前已开发出新型蓄电池:
银锌电池、镉镍电池、氢镍电池、锂离子电池、聚合物锂离子电池
三、燃料电池
1、燃料电池:
是使燃料与氧化剂反应直接产生电流的一种原电池
2、电极反应:
一般燃料电池发生的电化学反应的最终产物与燃烧产物相同,可根据燃烧反应写出总的电池反应,但不注明反应的条件。
,负极发生氧化反应,正极发生还原反应,不过要注意一般电解质溶液要参与电极反应。
以氢氧燃料电池为例,铂为正、负极,介质分为酸性、碱性和中性。
当电解质溶液呈酸性时:
2H2-4e?
=4H+正极:
O2+4e?
+4H+=2H2O
当电解质溶液呈碱性时:
2H2+4OH?
-4e?
=4H2O正极:
O2+2H2O+4e?
=4OH?
另一种燃料电池是用金属铂片插入KOH溶液作电极,又在两极上分别通甲烷?
燃料?
和氧气?
氧化剂?
。
电极反应式为:
CH4+10OH-+8e-?
=7H2O;
4H2O+2O2+8e-?
=8OH-?
电池总反应式为:
CH4+2O2+2KOH=K2CO3+3H2O
3、燃料电池的优点:
能量转换率高、废弃物少、运行噪音低
四、废弃电池的处理:
回收利用
五、金属的电化学腐蚀
(1)金属腐蚀内容:
(2)金属腐蚀的本质:
都是金属原子失去电子而被氧化的过程
(3)金属腐蚀的分类:
化学腐蚀—金属和接触到的物质直接发生化学反应而引起的腐蚀
电化学腐蚀—不纯的金属跟电解质溶液接触时,会发生原电池反应。
比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀。
化学腐蚀与电化腐蚀的比较
电化腐蚀
化学腐蚀
条件
不纯金属或合金与电解质溶液接触
金属与非电解质直接接触
现象
有微弱的电流产生
无电流产生
本质
较活泼的金属被氧化的过程
金属被氧化的过程
关系
化学腐蚀与电化腐蚀往往同时发生,但电化腐蚀更加普遍,危害更严重
(4)、电化学腐蚀的分类:
析氢腐蚀——腐蚀过程中不断有氢气放出
①条件:
潮湿空气中形成的水膜,酸性较强(水膜中溶解有CO2、SO2、H2S等气体)
②电极反应:
负极:
Fe–2e-=Fe2+
正极:
2H++2e-=H2↑
总式:
Fe+2H+=Fe2++H2↑
吸氧腐蚀——反应过程吸收氧气
中性或弱酸性溶液
负极:
2Fe–4e-=2Fe2+
正极:
O2+4e-+2H2O=4OH-
2Fe+O2+2H2O=2Fe(OH)2
离子方程式:
Fe2++2OH-=Fe(OH)2
生成的Fe(OH)2被空气中的O2氧化,生成Fe(OH)3,Fe(OH)2+O2+2H2O==4Fe(OH)3
Fe(OH)3脱去一部分水就生成Fe2O3·
xH2O(铁锈主要成分)
专题三有机化合物的获得与应用
绝大多数含碳的化合物称为有机化合物,简称有机物。
像CO、CO2、碳酸、碳酸盐等少数化合物,由于它们的组成和性质跟无机化合物相似,因而一向把它们作为无机化合物。
烃
1、烃的定义:
仅含碳和氢两种元素的有机物称为碳氢化合物,也称为烃。
2、烃的分类:
饱和烃→烷烃(如:
甲烷)
脂肪烃(链状)
烃不饱和烃→烯烃(如:
乙烯)
芳香烃(含有苯环)(如:
苯)
3、甲烷、乙烯和苯的性质比较:
有机物
烷烃
烯烃
苯及其同系物
通式
CnH2n+2
CnH2n
甲烷(CH4)
乙烯(C2H4)
苯(C6H6)
结构简式
CH4
CH2=CH2
或
(官能团)
结构特点
C-C单键,
链状,饱和烃
C=C双键,
链状,不饱和烃
一种介于单键和双键之间的独特的键,环状
空间结构
正四面体
六原子共平面
平面正六边形
物理性质
无色无味的气体,比空气轻,难溶于水
无色稍有气味的气体,比空气略轻,难溶于水
无色有特殊气味的液体,比水轻,难溶于水
用途
优良燃料,化工原料
石化工业原料,植物生长调节剂,催熟剂
溶剂,化工原料
主要化学性质
烷烃:
甲烷
①氧化反应(燃烧)
CH4+2O2――→CO2+2H2O(淡蓝色火焰,无黑烟)
②取代反应(注意光是反应发生的主要原因,产物有5种)
CH4+Cl2―→CH3Cl+HClCH3Cl+Cl2―→CH2Cl2+HCl
CH2Cl2+Cl2―→CHCl3+HClCHCl3+Cl2―→CCl4+HCl
在光照条件下甲烷还可以跟溴蒸气发生取代反应,
甲烷不能使酸性KMnO4溶液、溴水或溴的四氯化碳溶液褪色。
③高温分解
烯烃:
乙烯
①氧化反应(ⅰ)燃烧
C2H4+3O2――→2CO2+2H2O(火焰明亮,有黑烟)
(ⅱ)被酸性KMnO4溶液氧化,能使酸性KMnO4溶液褪色(本身氧化成CO2)。
②加成反应CH2=CH2+Br2-→CH2Br-CH2Br(能使溴水或溴的四氯化碳溶液褪色)
在一定条件下,乙烯还