六下数学第六单元总复习教案人教版Word格式文档下载.docx
《六下数学第六单元总复习教案人教版Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《六下数学第六单元总复习教案人教版Word格式文档下载.docx(8页珍藏版)》请在冰豆网上搜索。
2.多位数的读法和写法。
(1)提问:
怎样读多位数?
①明确读法。
从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零。
②举例说明。
(2)提问:
怎样写多位数?
①明确写法。
从高位到低位,一级一级地写,哪一个数位上一个计数单位也没有,就在那个数位上写0占位。
例如:
五亿九千零二十万零五
3.整数的大小比较。
(1)如何比较两个多位数的大小,谁能举例说说?
如果位数不同,位数多的数大。
100030>98320
如果位数相同,左起第一位上的数大的那个数就大。
例如:
469008>生3:
左起第一位上的数相同,就比较左起第二位上的数,左起第二位上的数相同,就比较左起第三位上的数,以此类推,直到比较出大小为止。
379088>379069
(2)如何比较负数与负数或正数与负数的大小?
借助数轴比较。
在数轴上,右边的数比左边的数大。
5>3,3>-1
两个负数相比,负号后面的数大的数反而小。
-5<-3
生3:
正数大于负数。
4.改写和省略尾数。
过渡:
根据需要,有时需要将一个较大的数改写成用“万”或“亿”作单位的数。
师:
谁能举例说说如何将一个较大的数改写成用“万”或“亿”作单位的数?
预设 w
如果是整万或整亿的数,改写时只要在原数末尾划掉4个0或8个0,同时加上“万”或“亿”字。
1080000=108万,200000000=2亿
如果改写的数不是整万或整亿的数,就在万位或亿位的右下方点上小数点,去掉小数末尾的0,再在小数后面写上“万”或“亿”字。
454897=45.4897万,150048709=1.50048709亿
有时根据实际需要,要把一个数某一位后面的尾数省略,求它的近似数。
谁能举例说一说,如何把一个数某一位后面的尾数省略,求它的近似数?
如果是省略万位后面的尾数,就要看千位上的数字,如果千位上是1,2,3,4,可直接舍去;
如果千位上是5或者是大于5的数字,就要向万位进一。
84973≈8万
如果是省略亿位后面的尾数,就要看千万位上的数字,如果千万位上是1,2,3,4,可直接舍去;
如果千万位上是5或者是大于5的数字,就要向亿位进一。
160387006≈2亿
(强调:
在小学阶段,通常用“四舍五入”法求一个数的近似数,一般根据要求,把小数保留到哪一位,就把这一位后面的尾数按照“四舍五入”法省略,中间用“≈”连接。
引导学生注意改写后的单位)
⊙典型例题解析
1.课件出示例1。
(1)27046=2×
( )+7×
( )+4×
( )+6×
( )
(2)88008中的三个“8”分别在什么数位上?
各表示什么?
这个数中的两个“0”各起到什么作用?
分析 本题中的两道题考查的都是有关数位的知识。
数位指一个数中每个数字所占的位置,同一个数字由于所占的位置不同,所表示的数值也不同。
(1)2在万位,表示2个万;
7在千位,表示7个千;
0在百位起占位作用;
4在十位,表示4个十;
6在个位,表示6个一。
(2)88008中的“8”从左往右,依次在万位,表示8个万;
在千位,表示8个千;
在个位,表示8个一。
两个0都起到占位作用。
解答
(1)10000 1000 10 1
(2)从左往右,数字“8”依次是在万位,表示8个万;
这个数中的两个0都起到占位作用。
2.课件出示例2。
地球距离太阳一亿四千九百六十万千米,横线上的数写作( );
“四舍五入”到“亿”位约是( )。
分析 本题考查的是多位数的写法、改写及省略。
写数时首先要给数分级,然后从高位到低位,一级一级地写,哪一位上是几就写几,哪一位上一个计数单位也没有就写“0”占位;
写省略数时,因为亿位后面的尾数最高位比5小,所以先把亿位后面的尾数省略,再添上“亿”字,即1亿。
解答 149600000 1亿
⊙合作探究
1.明确活动要求。
小组合作:
用4个7和3个0按下列要求组成七位数。
(1)只读一个“零”。
(2)一个“零”也不读出来。
2.讨论写数方法。
4个7和3个0组成的七位数包括个级和万级,根据0在多位数中的读写原则:
(1)如果想要只读出一个“零”,读出的0就要写在万级或个级的中间。
(2)如果要一个“零”也不读出来,那么就应该把0放在万级或个级的末尾。
3.汇报写数结果。
(课件展示)
(1)(答案不唯一)7077700 7770700 7700770
(2)7007770 7707700 7777000
⊙课堂总结
通过本节课的学习,你有哪些收获?
⊙布置作业
1.教材73页“做一做”。
2.教材74页1题。
板书设计
整数的认识
整数正整数(大于0)零负整数(小于0)自然数意义读、写方法大小比较数的改写
教学反思:
第2课时 小数的认识
课前准备
教具准备 PPT课件教学过程
⊙谈话揭题
上节课,我们从意义、读法、写法、大小比较、改写与省略尾数等几个方面复习了整数的相关知识,这节课我们按类似的思路来复习小数的相关知识。
小数的认识)
1.小数的意义。
你是不是遇到过这种情况,在分东西时常常得不到整数。
把一个苹果平均分给2个人,每个人只能得到半个苹果。
提问:
半个怎样表示呢?
谁来说说小数的意义?
半个可以用0.5表示。
把整数“1”平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……可以用小数来表示。
2.小数的数位顺序表。
小数的数位顺序表是怎样的?
谁能把整数、小数的数位顺序表补充完整?
(课件出示数位顺序表,小数部分留白。
指名回答,师填充)
整 数 部 分小数点小数部分
…亿级万级个级
数 位…千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位十分位百分位千分位万分位…
计数单位…千亿百亿十亿亿千万百万十万万千百十个
(一)十分之一百分之一千分之一万分之一…
3.小数的读法和写法。
(1)怎样读小数?
怎样写小数呢?
读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分按从左到右的顺序顺次读出每一个数位上的数字。
写小数的时候,整数部分按照整数的写法写,小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。
(2)写小数时需要注意什么?
(空位用“0”补足)
4.小数的分类。
(1)谁知道根据小数部分的位数是否有限,小数可以分成哪几类?
生:
根据小数部分的位数是否有限,小数可以分成“有限小数”和“无限小数”两类。
(2)谁能举例说明什么是有限小数?
什么是无限小数?
小数部分的位数是有限的小数,叫做有限小数。
21.7,35.3,0.13都是有限小数。
小数部分的位数是无限的小数,叫做无限小数。
8.33…,3.1415926…都是无限小数。
(3)无限小数还可以再细分吗?
如果细分可以分成哪几类?
无限小数可以分为无限不循环小数和循环小数。
(4)关于无限不循环小数和循环小数,你都了解哪些知识?
一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
π
一个数的小数部分,有一个数字或者连续几个数字依次不断地重复出现,这样的小数叫做循环小数。
2.555…,0.0333…,17.109109…。
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
3.99…的循环节是“9”,0.5454…的循环节是“54”。
5.小数的性质。
(1)谁能说说小数有怎样的性质?
在小数的末尾添上0或者去掉0,小数的大小不变。
(2)理解小数的性质时,应该注意什么?
(提示:
要注意的是“小数的末尾”,而不是“小数点的后面”)
6.小数点位置的变化。
小数点位置移动引起小数大小变化的规律是什么?
移动小数点时需要注意什么?
明确:
(1)小数点向右移动一位,该数就扩大到原来的10倍;
小数点向右移动两位,该数就扩大到原来的100倍;
小数点向右移动三位,该数就扩大到原来的1000倍……
将0.07的小数点向右移动一位、两位、三位,会分别得到0.7,7,70,它们分别将0.07扩大到原来的10倍、100倍、1000倍。
(2)小数点向左移动一位,该数就缩小到原来的110;
小数点向左移动两位,该数就缩小到原来的1100;
小数点向左移动三位,该数就缩小到原来的11000……
把3.25缩小到原来的110,1100,11000,只需把3.25的小数点向左移动一位、两位、三位就得到0.325,0.0325,0.00325。
小数点向左移或者向右移位数不够时,要用“0”补足)
一个四位数,给它加上小数点后比原数小2003.4,这个四位数是多少?
分析 此题考查的是学生对小数点位置的移动引起小数大小变化问题的掌握情况。
因为一个整数减去一个小数后,差的小数部分只有一位,从而推测出减数的小数部分也只有一位,即整数的小数点向左移动了一位,整数缩小到原来的110,它们的差是原数的1-110=910。
所以,原数为2003.4÷
910=2226。
解答 2003.4÷
1-110=2226
将3.14,π,,3.142,3.1415按从大到小的顺序排列。
分析 本题考查的是小数的大小比较。
此题中π的值应写出小数点后第五位上的数字才能比较,排列如下:
3.14=3.14000
π=3.14159…
3.14=3.14141…
3.142=3.14200
3.1415=3.14150
⊙探究活动
1.课件出示探究题目。
把37化成小数。
(1)求出小数点后第2012位上的数字是几?
(2)小数点后前2012位上的数字和是多少?
2.引导探究。
(1)小组合作,思考、交流:
①本题考查的是什么知识?
②如何把37化成小数?
③怎样解决问题?
(2)分组汇报。
组1:
本题考查的是分数化成小数的方法、循环小数的特点以及周期规律等知识的综合运用情况。
组2:
37=3÷
7=组3:
小数点后每六位“428571”为一个循环节,可以把这六个数字看成一组来考虑。
组4:
2012÷
6=335……2,所以小数点后第2012位上的数字是“428571”中的第2个数字2。
组5:
小数点后前2012位上的数字和是(4+2+8+5+7+1)×
335+(4+2)=27×
335+6=9051。
(3)小结。
解答此类题,要先把分数化成小数,然后根据循环节进行分析。
通常把一个循环节看作一组(一个周期),然后参照周期规律问题解答。
这节课你学到了什么?
教材75页7题。
小数的认识
小数小数的意义小数的数位顺序表小数的性质小数的分类有限小数无限小数循环小数不循环小数小数点位置移动引起小数大小变化的规律
第3课时 分数(百分数)的认识
教具准备 PPT课件
上节课我们复习了小数。
那么,小数与分数之间、分数与百分数之间又有怎样的区别和联系呢?
希望通过本节课对分数、百分数相关知识的复习,你能找到正确的答案。
[板书课题:
分数(百分数)的认识]
1.分数的意义、单位及分数与除法的关系。
(1)什么是分数?
什么是分数单位?
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数,其中的一份叫做分数单位。
(2)分数与除法有着怎样的关系?
除法中的被除数相当于分数中的分子,除数相当于分母,除号相当于分数线。
因为0不能作除数,所以,所有分数的分母都不能为0。
2.真分数、假分数的特点。
(1)真分数的分子比分母小,真分数的分数值小于1。
(2)假分数的分子大于或等于分母,假分数的分数值大于或等于1。
3.分数的基本性质、约分和通分。
(1)什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
这叫做分数的基本性质。
(2)什么是约分和通分?
把一个分数化成同它相等,但是分子、分母都比较小的分数,叫做约分。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(3)什么是最简分数?
分子和分母是互质的分数,叫做最简分数。
4.小数、分数、百分数的互化。
(1)小数、分数、百分数的互化。
①小数化成分数。
原来有几位小数,就在1的后面写几个0作分母,把原来的小数去掉小数点作分子,能约分的要约分。
0.7=710,1.25=125100=54。
②分数化成小数。
用分子除以分母,能除尽的就化成有限小数;
有的不能除尽,不能化成有限小数的,一般保留三位小数。
34=3÷
4=0.75,325=3÷
25=0.12,
37=3÷
7≈0.429,49=4÷
9≈0.444。
③小数化成百分数。
只要把小数点向右移动两位,同时在后面添上百分号即可。
0.23=23%,1.7=170%。
④百分数化成小数。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位即可。
120%=1.2,85%=0.85。
⑤分数化成百分数。
通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
17≈0.143=14.3%
⑥百分数化成分数。
先把百分数改写成分数,能约分的要约成最简分数。
85%=85100=1720。
(2)举例说一说什么样的分数能化成有限小数。
一个最简分数,如果分母中除了2或5(2和5)以外,不含有其他的质因数,这个分数就能化成有限小数。
1320=0.65,分母中只含有质因数2和5。
=0.8125,分母中只含有质因数2。
如果一个最简分数的分母中含有除2和5以外的质因数,这个分数就不能化成有限小数。
118≈0.056。
分母中除质因数2外,还有质因数3。
如果不是最简分数,要把分数先化成最简分数后再判断。
3375分母中含有除2和5以外的质因数,但它能化成有限小数,因为把3375化成最简分数后,它的分母中只含有质因数5)
一堆沙子重3吨,把它平均分成5份,每份是( )吨,每份占这堆沙子的( )。
分析 本题考查的是除法和分数在意义上的区别。
第一个空填的是具体的数量,可以根据除法的意义,用“总数量÷
份数=每份的数量”,即3÷
5=35(吨);
第二个空填的是分率,可以根据分数的意义,把这堆沙子看作单位“1”,平均分成5份,每份就是这堆沙子的15。
解答 35 15
比较37与59的大小。
分析 本题考查的是学生对分数大小比较方法的掌握情况。
本题的解法不唯一,无论选择哪种,合理即可。
解答 方法一 通分。
37=2763,59=3563,因为2763<3563,所以37<59。
方法二 化成同分子分数。
37=1535,59=1527,因为1535<1527,所以37<59。
方法三 与12比较。
37<12,59>12,所以37<59。
方法四 根据与1的差比较。
1-37=47,1-59=49,因为49<47,所以37<59。
方法五 根据倒数比较。
37的倒数是213,59的倒数是145,因为145<213,所以37<59。
通过本节课的学习,掌握了分数的相关知识及与百分数、小数的关系,我们要能应用这些知识解决实际问题,做到学以致用。
教材75页4、8题。
分数(百分数)的认识
分数(百分数)分数的意义、单位及与除法的关系。
分数的分类真分数假分数→带分数分数的基本性质约分→最简分数通分分数、小数和百分数的互化及大小比较。