19人教版八年级下第十九章一次函数全章练习校本课时作业.docx
《19人教版八年级下第十九章一次函数全章练习校本课时作业.docx》由会员分享,可在线阅读,更多相关《19人教版八年级下第十九章一次函数全章练习校本课时作业.docx(30页珍藏版)》请在冰豆网上搜索。
19人教版八年级下第十九章一次函数全章练习校本课时作业
第十九章一次函数
测试1变量与函数
学习要求
1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围)
2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值.
3.对函数关系的表示法(如解析法、列表法、图象法)有初步认识.
课堂学习检测
一、填空题
1.设在某个变化过程中有两个变量x和y,如果对于变量x取值范围内的______,另一个变量y都有______的值与它对应,那么就说______是自变量,______是的函数.
2.设y是x的函数,如果当x=a时,y=b,那么b叫做当自变量的值为______时的______.
3.对于一个函数,在确定自变量的取值范围时,不仅要考虑______有意义,而且还要注意问题的______.
4.飞轮每分钟转60转,用解析式表示转数n和时间t(分)之间的函数关系式:
(1)以时间t为自变量的函数关系式是______.
(2)以转数n为自变量的函数关系式是______.
5.某商店进一批货,每件5元,售出时,每件加利润0.8元,如售出x件,应收货款y元,那么y与x的函数关系式是______,自变量x的取值范围是______.
6.已知5x+2y-7=0,用含x的代数式表示y为______;用含y的代数式表示x为______.
7.已知函数y=2x2-1,当x1=-3时,相对应的函数值y1=______;当时,相对应的函数值y2=______;当x3=m时,相对应的函数值y3=______.反过来,当y=7时,自变量x=______.
8.已知根据表中自变量x的值,写出相对应的函数值.
x
…
-4
-3
-2
-1
0
1
2
3
4
…
y
二、求出下列函数中自变量x的取值范围
9.10.11.
12.13.14.
15.16.17.
综合、运用、诊断
一、选择题
18.在下列等式中,y是x的函数的有()
3x-2y=0,x2-y2=1,
A.1个B.2个C.3个D.4个
19.设一个长方体的高为10cm,底面的宽为xcm,长是宽的2倍,这个长方体的体积
V(cm3)与长、宽的关系式为V=20x2,在这个式子里,自变量是()
A.20x2B.20xC.VD.x
20.电话每台月租费28元,市区内电话(三分钟以内)每次0.20元,若某台电话每次通
话均不超过3分钟,则每月应缴费y(元)与市内电话通话次数x之间的函数关系式
是()
A.y=28x+0.20B.y=0.20x+28x
C.y=0.20x+28D.y=28-0.20x
二、解答题
21.已知:
等腰三角形的周长为50cm,若设底边长为xcm,腰长为ycm,求y与x的函数解析式及自变量x的取值范围.
22.某人购进一批苹果到集市上零售,已知卖出的苹果x(千克)与销售的金额y元的关系如下表:
x(千克)
1
2
3
4
5
…
y(元)
2+0.1
4+0.2
6+0.3
8+0.4
10+0.5
…
(1)写出y与x的函数关系式:
______;
(2)该商贩要想使销售的金额达到250元,至少需要卖出多少千克的苹果?
拓展、探究、思考
23.用40m长的绳子围成矩形ABCD,设AB=xm,矩形ABCD的面积为Sm2,
(1)求S与x的函数解析式及x的取值范围;
(2)写出下面表中与x相对应的S的值:
x
…
8
9
9.5
10
10.5
11
12
…
S
…
(3)猜一猜,当x为何值时,S的值最大?
(4)想一想,如果打算用这根绳子围成的面积比(3)中的还大,应围成么样的图形?
并算出相应的面积.
测试2函数的图象
学习要求
初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,能初步学会依据函数的图象分析(或回答)该函数的某些性质(即“看图识性”).
课堂学习检测
一、解答题
1.回答问题.
(1)什么是函数的图象?
(2)为什么要学习函数的图象?
(3)用“描点法”画一个函数的图象的一般步骤是什么?
2.用“描点法”分别画出下列各函数的图象.
(1)
x
…
-6
-4
-2
0
2
4
…
y
解:
函数的自变量x的取值范围是______.
(2)
解:
函数的自变量x的取值范围是______.
x
…
-6
-4
-2
0
2
4
…
y
问题:
当
(2)中的自变量x的取值范围变为-2≤x<4时,请在上图中标出相应的图象部分.
(3)y=x2
解:
函数y=x2的自变量x的取值范围是____.
x
…
-1
0
1
…
y
…
从图象可以得到,函数图象的最低点的坐标是______;此图象关于______对称.
3.如图2-1,下面的图象记录了某地一月份某大的温度随时间变化的情况,请你仔细观察图象回答下面的问题:
图2-1
(1)在这个问题中,变量分别是______,时间的取值范围是______;
(2)20时的温度是______℃,温度是0℃的时刻是______时,最暖和的时刻是_______时,温度在-3℃以下的持续时间为______小时;
(3)你从图象中还能获得哪些信息?
(写出1~2条即可)
答:
__________________________________________________.
综合、运用、诊断
一、选择题
4.图2-2中,表示y是x的函数图象是()
图2-2
5.如图2-3是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()
图2-3
A.39.0℃B.38.2℃C.38.5℃D.37.8℃
6.如图2-4,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t(小时)与山高h(千米)间的函数关系用图象表示是()
图2-4
二、填空题
7.星期日晚饭后,小红从家里出去散步,图2-5所示,描述了她散步过程中离家的距离s(m)与散步所用的时间t(min)之间的函数关系,该图象反映的过程是:
小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题
图2-5
(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分;
(2)小红在公共阅报栏看新闻一共用了______分;
(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分;
(4)小红从邮亭走回家用了______分,平均速度是______米/秒.
三、解答题
8.已知:
线段AB=36米,一机器人从A点出发,沿线段AB走向B点.
(1)求所走的时间t(秒)与其速度V(米/秒)的函数解析式及自变量V的取值范围;
(2)利用描点法画出此函数的图象.
拓展、探究、思考
9.大家知道,函数图象特征与函数性质之间存在着必然联系.请根据图2-6中的函数图象
特征及表中的提示,说出此函数的变化规律.此外,你还能说出此函数的哪些性质?
图2-6
序号
函数图象特征
函数变化规律
(1)
曲线从点A(-6,-4)至点K(7,2)
自变量的取值范围是______.
(2)
曲线与y轴交于点D(0,4)
当x=______时,y=______.
(3)
曲线与x轴分别交于点B(-5,0)、F(2,0)、H(6,0)
当x的值分别为时______,y=0.
(4)
曲线经过点E(1,2)
当x=______时,y=______.
(5)
由左至右曲线AC呈上升状态
当-6≤x≤-2时,y随x的增大而______.
(6)
由左至右曲线CG呈下降状态
当______时,y随x的增大而___________.
(7)
由左至右曲线GK呈____________
当______时y随____________.
(8)
曲线上的最高点是C(-2,5)
当x=______时,y有______值,且这个值为____________.
(9)
曲线上的最低点是____________
当x=______时,y有______值,且这个值为____________.
(10)
曲线BCF位于x轴的上方
当______时,y______0.
测试3正比例函数
学习要求
理解正比例函数的概念,能正确画出正比例函数y=kx的图象,能依据图象说出正比例函数的主要性质,解决简单的实际问题.
课堂学习检测
一、填空题
1.形如______的函数叫做正比例函数.其中______叫做比例系数.
2.可以证明,正比例函数y=kx(k是常数.k≠0)的图象是一条经过______点与点(1,______的__________,我们称它为______.
3.如图3-1,当k>0时,直线y=kx经过______象限,从左向右______,因此正比例函数y=kx,当k>0时,y随x的增大而______;当k<0时,直线y=kx经过______象限,从左向右______,因此正比例函数y=kx,当k<0时,y随x的增大反而______.
图3-1
4.若直线y=kx经过点A(-5,3),则k=______.如果这条直线上点A的横坐标xA=4,那么它的纵坐标yA=______.
5.若是函数y=kx的一组对应值,则k=______,并且当x≥5时,y______;当y<-2时,x____________.
二、选择题
6.下列函数中,是正比例函数的是()
A.y=2xB.
C.y=x2D.y=2x-1
7.如图3-2,函数y=-x(x<0)的图象是()
图3-2
8.函数y=-2x的图象一定经过下列四个点中的()
A.点(1,2)B.点(-2,1)
C.点D.点
9.如果函数y=(k-2)x为正比例函数,那么()
A.k>0B.k>2
C.k为实数D.k为不等于2的实数
10.如果函数是正比例函数,那么()
A.m=2或m=0B.m=2C.m=0D.m=1
综合、运用、诊断
一、解答题
11.若规定直角坐标系中,直线向上的方向与x轴的正方向所成的角叫做直线的倾斜角.请在同一坐标系中,分别画出各正比例函数的图象,它们各自的倾斜角是锐角还是钝角?
比例系数k对其倾斜角有何影响?
(1)
(2)
12.有一长方形AOBC纸片放在如图3-3所示的坐标系中,且长方形的两边的比为OA:
AC=2:
1.
(1)求直线OC的解析式;
(2)求出x=-5时,函数y的值;
(3)求出y=-5时,自变量x的值;
(4)画这个函数的图象;
(5)根据图象回答,当x从2减小到-3时,y的值是如何变化的?
图3-3
13.如图3-4,居室窗户的高90cm,活动窗拉开的最大距离是80cm.如果活动窗拉