高三总复习直线与圆的方程知识点总结及典型例题.doc

上传人:b****3 文档编号:2121101 上传时间:2022-10-27 格式:DOC 页数:27 大小:1.21MB
下载 相关 举报
高三总复习直线与圆的方程知识点总结及典型例题.doc_第1页
第1页 / 共27页
高三总复习直线与圆的方程知识点总结及典型例题.doc_第2页
第2页 / 共27页
高三总复习直线与圆的方程知识点总结及典型例题.doc_第3页
第3页 / 共27页
高三总复习直线与圆的方程知识点总结及典型例题.doc_第4页
第4页 / 共27页
高三总复习直线与圆的方程知识点总结及典型例题.doc_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

高三总复习直线与圆的方程知识点总结及典型例题.doc

《高三总复习直线与圆的方程知识点总结及典型例题.doc》由会员分享,可在线阅读,更多相关《高三总复习直线与圆的方程知识点总结及典型例题.doc(27页珍藏版)》请在冰豆网上搜索。

高三总复习直线与圆的方程知识点总结及典型例题.doc

直线与圆的方程

一、直线的方程

1、倾斜角:

L

,范围0≤<,

若轴或与轴重合时,=00。

2、斜率:

k=tan与的关系:

=0=0

已知L上两点P1(x1,y1)0<<

P2(x2,y2)=不存在

k=

当=时,=900,不存在。

当时,=arctank,<0时,=+arctank

3、截距(略)曲线过原点横纵截距都为0。

4、直线方程的几种形式

已知

方程

说明

几种特殊位置的直线

斜截式

K、b

Y=kx+b

不含y轴和行平于y轴的直线

①x轴:

y=0

点斜式

P1=(x1,y1)

k

y-y1=k(x-x1)

不含y轴和平行于y轴的直线

②y轴:

x=0

两点式

P1(x1,y1)

P2(x2,y2)

不含坐标辆和平行于坐标轴的直线

③平行于x轴:

y=b

截距式

a、b

不含坐标轴、平行于坐标轴和过原点的直线

④平行于y轴:

x=a

⑤过原点:

y=kx

一般式

Ax+by+c=0

A、B不同时为0

两个重要结论:

①平面内任何一条直线的方程都是关于x、y的二元一次方程。

②任何一个关于x、y的二元一次方程都表示一条直线。

5、直线系:

(1)共点直线系方程:

p0(x0,y0)为定值,k为参数y-y0=k(x-x0)

特别:

y=kx+b,表示过(0、b)的直线系(不含y轴)

(2)平行直线系:

①y=kx+b,k为定值,b为参数。

②AX+BY+入=0表示与Ax+By+C=0平行的直线系

③BX-AY+入=0表示与AX+BY+C垂直的直线系

(3)过L1,L2交点的直线系A1x+B1y+C1+入(A2X+B2Y+C2)=0(不含L2)

6、三点共线的判定:

①,②KAB=KBC,

③写出过其中两点的方程,再验证第三点在直线上。

二、两直线的位置关系

1、

L1:

y=k1x+b1

L2:

y=k2x+b2

L1:

A1X+B1Y+C1=0

L2:

A2X+B2Y+C2=0

L1与L2组成的方程组

平行

K1=k2且b1≠b2

无解

重合

K1=k2且b1=b2

有无数多解

相交

K1≠k2

有唯一解

垂直

K1·k2=-1

A1A2+B1B2=0

(说明:

当直线平行于坐标轴时,要单独考虑)

2、L1 到L2的角为0,则()

3、夹角:

4、点到直线距离:

(已知点(p0(x0,y0),L:

AX+BY+C=0)

①两行平线间距离:

L1=AX+BY+C1=0L2:

AX+BY+C2=0

②与AX+BY+C=0平行且距离为d的直线方程为Ax+By+C±

③与AX+BY+C1=0和AX+BY+C2=0平行且距离相等的直线方程是

5、对称:

(1)点关于点对称:

p(x1,y1)关于M(x0,y0)的对称

(2)点关于线的对称:

设p(a、b)

对称轴

对称点

对称轴

对称点

X轴

Y=-x

Y轴

X=m(m≠0)

y=x

y=n(n≠0)

一般方法:

如图:

(思路1)设P点关于L的对称点为P0(x0,y0)则Kpp0﹡KL=-1

P,P0中点满足L方程

解出P0(x0,y0)

(思路2)写出过P⊥L的垂线方程,先求垂足,然后用中点坐标公式求出P0(x0,y0)的坐标。

P

y L

P0

x

(3)直线关于点对称

L:

AX+BY+C=0关于点P(X0、Y0)的对称直线:

A(2X0-X)+B(2Y0-Y)+C=0

(4)直线关于直线对称

①几种特殊位置的对称:

已知曲线f(x、y)=0

关于x轴对称曲线是f(x、-y)=0关于y=x对称曲线是f(y、x)=0

关于y轴对称曲线是f(-x、y)=0关于y=-x对称曲线是f(-y、-x)=0

关于原点对称曲线是f(-x、-y)=0关于x=a对称曲线是f(2a-x、y)=0

关于y=b对称曲线是f(x、2b-y)=0

一般位置的对称、结合平几知识找出相关特征,逐步求解。

三、简单的线性规划

LY

不等式表示的区域

OX

AX+BY+C=0

约束条件、线性约束条件、目标函数、线性目标函数、线性规划,可行解,最优解。

要点:

①作图必须准确(建议稍画大一点)。

②线性约束条件必须考虑完整。

③先找可行域再找最优解。

四、圆的方程

1、圆的方程:

①标准方程,c(a、b)为圆心,r为半径。

②一般方程:

当时,表示一个点。

当时,不表示任何图形。

③参数方程:

为参数

以A(X1,Y1),B(X2,Y2)为直径的两端点的圆的方程是

(X-X1)(X-X2)+(Y-Y1)(Y-Y2)=0

2、点与圆的位置关系:

考察点到圆心距离d,然后与r比较大小。

3、直线和圆的位置关系:

相交、相切、相离

判定:

①联立方程组,消去一个未知量,得到一个一元二次方程:

△>0相交、△=0相切、△<0相离

②利用圆心c(a、b)到直线AX+BY+C=0的距离d来确定:

d<r相交、d=r相切d>r相离

(直线与圆相交,注意半径、弦心距、半弦长所组成的kt△)

4、圆的切线:

(1)过圆上一点的切线方程

与圆相切于点(x1、y1)的切线方程是

与圆相切于点(x1、y1)的切成方程

为:

与圆相切于点(x1、y1)的切线是

(2)过圆外一点切线方程的求法:

已知:

p0(x0,y0)是圆外一点

①设切点是p1(x1、y1)解方程组

先求出p1的坐标,再写切线的方程

②设切线是即

再由,求出k,再写出方程。

(当k值唯一时,应结合图形、考察是否有垂直于x轴的切线)

③已知斜率的切线方程:

设(b待定),利用圆心到L距离为r,确定b。

5、圆与圆的位置关系

由圆心距进行判断、相交、相离(外离、内含)、相切(外切、内切)

6、圆系

①同心圆系:

,(a、b为常数,r为参数)

或:

(D、E为常数,F为参数)

②圆心在x轴:

③圆心在y轴:

④过原点的圆系方程

⑤过两圆和

的交点的圆系方程为

(不含C2),其中入为参数

若C1与C2相交,则两方程相减所得一次方程就是公共弦所在直线方程。

类型一:

圆的方程

例1求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系.

分析:

欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.

解法一:

(待定系数法)

设圆的标准方程为.

∵圆心在上,故.

∴圆的方程为.

又∵该圆过、两点.

解之得:

,.

所以所求圆的方程为.

解法二:

(直接求出圆心坐标和半径)

因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线的方程为:

即.

又知圆心在直线上,故圆心坐标为

∴半径.

故所求圆的方程为.

又点到圆心的距离为

∴点在圆外.

说明:

本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

例2求半径为4,与圆相切,且和直线相切的圆的方程.

分析:

根据问题的特征,宜用圆的标准方程求解.

解:

则题意,设所求圆的方程为圆.

圆与直线相切,且半径为4,则圆心的坐标为或.

又已知圆的圆心的坐标为,半径为3.

若两圆相切,则或.

(1)当时,,或(无解),故可得.

∴所求圆方程为,或.

(2)当时,,或(无解),故.

∴所求圆的方程为,或.

说明:

对本题,易发生以下误解:

由题意,所求圆与直线相切且半径为4,则圆心坐标为,且方程形如.又圆,即,其圆心为,半径为3.若两圆相切,则.故,解之得.所以欲求圆的方程为,或.

上述误解只考虑了圆心在直线上方的情形,而疏漏了圆心在直线下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.

例3求经过点,且与直线和都相切的圆的方程.

分析:

欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.

解:

∵圆和直线与相切,

∴圆心在这两条直线的交角平分线上,

又圆心到两直线和的距离相等.

∴.

∴两直线交角的平分线方程是或.

又∵圆过点,

∴圆心只能在直线上.

设圆心

∵到直线的距离等于,

∴.

化简整理得.

解得:

∴圆心是,半径为或圆心是,半径为.

∴所求圆的方程为或.

说明:

本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.

例4、设圆满足:

(1)截轴所得弦长为2;

(2)被轴分成两段弧,其弧长的比为,在满足条件

(1)

(2)的所有圆中,求圆心到直线的距离最小的圆的方程.

分析:

要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.

解法一:

设圆心为,半径为.

则到轴、轴的距离分别为和.

由题设知:

圆截轴所得劣弧所对的圆心角为,故圆截轴所得弦长为.

又圆截轴所得弦长为2.

∴.

又∵到直线的距离为

当且仅当时取“=”号,此时.

这时有

∴或

故所求圆的方程为或

解法二:

同解法一,得

∴.

∴.

将代入上式得:

上述方程有实根,故

∴.

将代入方程得.

又  ∴.

由知、同号.

故所求圆的方程为或.

说明:

本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?

类型二:

切线方程、切点弦方程、公共弦方程

例5 已知圆,求过点与圆相切的切线.

解:

∵点不在圆上,∴切线的直线方程可设为

根据∴

解得

所以

因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为.

说明:

上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.

本题还有其他解法,例

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1