完整word版人教版高中数学必修一课后习题答案docxWord下载.docx

上传人:b****6 文档编号:21061499 上传时间:2023-01-27 格式:DOCX 页数:52 大小:42.01KB
下载 相关 举报
完整word版人教版高中数学必修一课后习题答案docxWord下载.docx_第1页
第1页 / 共52页
完整word版人教版高中数学必修一课后习题答案docxWord下载.docx_第2页
第2页 / 共52页
完整word版人教版高中数学必修一课后习题答案docxWord下载.docx_第3页
第3页 / 共52页
完整word版人教版高中数学必修一课后习题答案docxWord下载.docx_第4页
第4页 / 共52页
完整word版人教版高中数学必修一课后习题答案docxWord下载.docx_第5页
第5页 / 共52页
点击查看更多>>
下载资源
资源描述

完整word版人教版高中数学必修一课后习题答案docxWord下载.docx

《完整word版人教版高中数学必修一课后习题答案docxWord下载.docx》由会员分享,可在线阅读,更多相关《完整word版人教版高中数学必修一课后习题答案docxWord下载.docx(52页珍藏版)》请在冰豆网上搜索。

完整word版人教版高中数学必修一课后习题答案docxWord下载.docx

,得

4

即一次函数yx3与y2x6的图象的交点为(1,4),

所以一次函数yx3与y2x6的图象的交点组成的集合为{(1,4)};

(4)由4x53,得x2,

所以不等式4x53的解集为{x|x2}.

1.1.2集合间的基本关系

练习(第7页)

1.写出集合{a,b,c}的所有子集.

1.解:

按子集元素个数来分类,不取任何元素,得;

取一个元素,得{a},{b},{c};

取两个元素,得{a,b},{a,c},{b,c};

取三个元素,得{a,b,c},

即集合{a,b,c}的所有子集为,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.

2.用适当的符号填空:

(1)a______{a,b,c};

(2)0______{x|x2

0};

(3)

______{x

R|x2

(4){0,1}______N;

(5)

{0}______{x|x2

x};

(6){2,1}______{x|x2

3x

2

0}.

2.

(1)

a

{a,b,c}

a是集合{a,b,c}中的一个元素;

0}

{0}

{x

方程x2

0无实数根,{x

(4)

{0,1}

N

(或{0,1}

N)

{0,1}是自然数集合N的子集,也是真子集;

(或{0}

x})

{0,1};

(6){2,1}

3x2

0两根为x1

1,x2

2.

3.判断下列两个集合之间的关系:

(1)A

{1,2,4},B

{x|x是8的约数};

(2)A

{x|x3k,kN},B{x|x

6z,zN};

(3)A

{x|x是4与10的公倍数,x

N},B{x|x20m,mN}.

3.解:

(1)因为B{x|x是8的约数}{1,2,4,8},所以AB;

(2)当k2z时,3k6z;

当k2z1时,3k6z3,

即B是A的真子集,BA;

(3)因为4与10的最小公倍数是20,所以AB.

1.1.3集合的基本运算

练习(第11页)

1.设A{3,5,6,8},

B{4,5,7,8}

,求AI

B,AUB.

AIB

{3,5,6,8}

I{4,5,7,8}

{5,8}

AUB

U{4,5,7,8}

{3,4,5,6,7,8}

2.设A{x|x2

4x5

0},B

1},求AI

4x

5

0的两根为x1

5,

1,

得A

{

1,5},B

{1,1},

即AI

1},AUB{

1,1,5}.

3.已知A{x|x是等腰三角形},B

{x|x是直角三角形},求AIB,AUB.

{x|x是等腰直角三角形

},

{x|x是等腰三角形或直角三角形

}.

4.已知全集U

{1,2,3,4,5,6,7},A

{2,4,5},

B{1,3,5,7},

求AI(痧UB),(UA)I(?

UB).

4.解:

显然eUB

{2,4,6},eUA

{1,3,6,7}

则AI

(eUB)

{2,4},(痧UA)I(UB)

{6}.

3

习题1.1

(第11页)

A组

1.用符号“

”或“

”填空:

(1)

32

_______Q;

(2)32

______N;

(3)

7

_______R;

9_______Z;

(6)(

5)2

_______N.

1.

(1)

Q

32是有理数;

32

9是个自然数;

是个无理数,不是有理数;

R

2是实数;

9

Z

3是个整数;

(6)(5)2

5是个自然数.

2.已知A

{x|x

3k

1,k

Z},用“

”符号填空:

(1)5_______A;

(2)7_______A;

(3)10_______A.

2.

(1)5

(2)7

A;

10A.

当k

2时,

当k3

时,

10

3.用列举法表示下列给定的集合:

(1)大于1且小于6的整数;

(2)A{x|(x1)(x2)

(3)B{xZ|32x13}.

(1)大于1且小于6的整数为

2,3,4,5,即{2,3,4,5}

为所求;

(2)方程(x

1)(x

2)

0的两个实根为x1

2,x2

1,即{

2,1}为所求;

(3)由不等式

2x

3,得

2,且x

Z,即{0,1,2}为所求.

4.试选择适当的方法表示下列集合:

(1)二次函数yx24的函数值组成的集合;

(2)反比例函数y的自变量的值组成的集合;

(3)不等式3x42x的解集.

(1)显然有x2

0,得x2

4,即y

4,

得二次函数yx2

4的函数值组成的集合为{y|y

4};

(2)显然有x

0,得反比例函数

的自变量的值组成的集合为{x|x

42x

,得x

,即不等式3x4

2x的解集为{x|x

4}.

5.选用适当的符号填空:

(1)已知集合A{x|2x33x},B{x|x2},则有:

4_______B;

3_______A;

{2}_______B;

B_______A;

(2)已知集合A{x|x210},则有:

1_______A;

{1}_______A;

_______A;

{1,1}_______A;

(3){x|x是菱形}_______{x|x是平行四边形};

{x|x是等腰三角形}_______{x|x是等边三角形}.

5.

(1)4

B;

{2}

33x

3,即A

3},B{x|x2};

(2)1

{1}

{1,

1}=A;

0}{

1,1};

(3){x|x是菱形}

{x|x是平行四边形};

菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;

{x|x是等边三角形}{x|x是等腰三角形}.

等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.

6.设集合A{x|2x4},B{x|3x782x},求AUB,AIB.

6.解:

3x782x,即x3,得A{x|2x4},B{x|x3},

则AUB{x|x2},AIB{x|3x4}.

7.设集合A{x|x是小于9的正整数},B{1,2,3},C{3,4,5,6},求AIB,

AIC,AI(BUC),AU(BIC).

7.解:

A{x|x是小于9的正整数}{1,2,3,4,5,6,7,8},

则AIB{1,2,3},AIC{3,4,5,6},

而BUC{1,2,3,4,5,6},BIC{3},

则AI(BUC)

{1,2,3,4,5,6},

AU(BIC){1,2,3,4,5,6,7,8}.

8.学校里开运动会,设A{x|x是参加一百米跑的同学},

B{x|x是参加二百米跑的同学},C{x|x是参加四百米跑的同学},

学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,

并解释以下集合运算的含义:

(1)AUB;

(2)AIC.

8.解:

用集合的语言说明这项规定:

每个参加上述的同学最多只能参加两项,

即为(AIB)IC.

(1)AUB{x|x是参加一百米跑或参加二百米跑的同学};

(2)AIC{x|x是既参加一百米跑又参加四百米跑的同学}.

9.设S{x|x是平行四边形或梯形},A{x|x是平行四边形},B{x|x是菱形},

C{x|x是矩形},求BIC,eAB,eSA.

9.解:

同时满足菱形和矩形特征的是正方形,即BIC{x|x是正方形},

平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,

即eAB

{x|x是邻边不相等的平行四边形

eSA{x|x是梯形}.

10.已知集合A

{x|3

x7},B{x|2

x10},求eR(AUB),eR(AI

B),

(eRA)IB,AU(eRB).

10.解:

AUB

{x|2

x10},AI

x7},

eRA

3,或x

7},eRB

2,或x

10},

得eR(AUB)

eR(AIB){x|x

7},

(eRA)IB

x3,或7

x10},

AU(eRB)

2,或3

7或x

10}.

B组

1.已知集合A{1,2},集合B满足AUB{1,2},则集合B有个.

6

1.4集合B满足AUB

A,则B

A,即集合B是集合A的子集,得4个子集.

2.在平面直角坐标系中,集合

{(x,y)|yx}表示直线y

x,从这个角度看,

表示什么?

集合C,D之间有什么关系?

集合D(x,y)|

4y

集合D

(x,y)|

表示两条直线2xy

1,x4y

5的交点的集合,

即D

{(1,1)},点D(1,1)显然在直线y

x上,

得DC.

3.设集合A

{x|(x

3)(x

a)

0,a

R},B{x|(x

4)(x

1)0},求AUB,AIB.

显然有集合B

4)(x1)

{1,4},

当a

3时,集合A

{3},则AUB

{1,3,4},AI

1时,集合A

{1,3},则AUB

{1,3,4},

AI

{1};

4时,集合A

{3,4},则AUB

{1,3,4},

AIB

{4};

当a1,且a3,且a4时,集合A{3,a},

则AUB{1,3,4,a},AIB.

4.已知全集UAUB{xN|0x10},AI(eB){1,3,5,7},试求集合B.

U

显然U{0,1,2,3,4,5,6,7,8,9,10},由UAUB,

得eBA,即AI(痧B)B,而AI(eB){1,3,5,7},

UUUU

得eB{1,3,5,7},而B痧(B),

UUU

即B{0,2,4,6,8.9,10}.

1.2函数及其表示

1.2.1函数的概念

练习(第19页)

1.求下列函数的定义域:

(2)f(x)1xx31.

(1)f(x)

(1)要使原式有意义,则

得该函数的定义域为

4x7

0,即x

7};

(2)要使原式有意义,则

x0

,即

{x|

1}.

2.已知函数f(x)

3x2

2x,

(1)求f

(2),f(

2),

f

(2)

f(

2)的值;

(2)求f(a),f(a),

f(a)

a)的值.

(1)由f(x)

2x,得f

(2)

22

18,

同理得

2)2

8

则f

(2)

18

26,

即f

(2)

18,f

(2)

8,f

(2)

f

(2)

26;

(2)由f(x)

2x,得f(a)

3a2

2a3a2

2a,

a)2

3a2

则f(a)

(3a2

2a)

6a2

即f(a)

2a,f(

a)3a2

2a,f(a)

6a2.

3.判断下列各组中的函数是否相等,并说明理由:

(1)表示炮弹飞行高度h与时间t关系的函数h130t

5t2和二次函数y130x

5x2;

(2)f(x)1和g(x)x0.

(1)不相等,因为定义域不同,时间t

0;

(2)不相等,因为定义域不同,g(x)

x0(x0).

1.2.2函数的表示法

练习(第23页)

25cm

的圆形木头锯成矩形木料,如果矩形的一边长为

xcm,

.如图,把截面半径为

面积为ycm2,把y表示为

x的函数.

显然矩形的另一边长为502x2cm,

x502

x2

2500

,且0

x50,

即y

x2500

(0x

50)

2.下图中哪几个图象与下述三件事分别吻合得最好?

请你为剩下的那个图象写出一件事.

(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;

(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;

(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.

离开家的距离离开家的距离离开家的距离离开家的距离

O时间O时间O时间O时间

(A)(B)(C)(D)

图象(A)对应事件

(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;

图象(B)对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;

图象(D)对应事件

(1),返回家里的时刻,离开家的距离又为零;

图象(C)我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.

3.画出函数y|x2|的图象.

x2,x2

y|x2|,图象如下所示.

4.设A{x|x是锐角},B{0,1},从A到B的映射是“求正弦”,

与A中元素60o相对应

的B中

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 英语考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1