机械手上料的综合控制系统设计Word文档下载推荐.docx

上传人:b****6 文档编号:20374702 上传时间:2023-01-22 格式:DOCX 页数:22 大小:971.75KB
下载 相关 举报
机械手上料的综合控制系统设计Word文档下载推荐.docx_第1页
第1页 / 共22页
机械手上料的综合控制系统设计Word文档下载推荐.docx_第2页
第2页 / 共22页
机械手上料的综合控制系统设计Word文档下载推荐.docx_第3页
第3页 / 共22页
机械手上料的综合控制系统设计Word文档下载推荐.docx_第4页
第4页 / 共22页
机械手上料的综合控制系统设计Word文档下载推荐.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

机械手上料的综合控制系统设计Word文档下载推荐.docx

《机械手上料的综合控制系统设计Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《机械手上料的综合控制系统设计Word文档下载推荐.docx(22页珍藏版)》请在冰豆网上搜索。

机械手上料的综合控制系统设计Word文档下载推荐.docx

机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。

1.2机械手的定义与分类

机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。

机械手的迅速发展是由于它的积极作用正日益为人们所认识。

其一,它能部分代替人工操作;

其二,它能按照生产工艺要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;

其三,它能操作必要的机具进行焊接和装配。

因此,它能大大地改善工人的劳动条件,显著地提高劳动生产率,加快实现工业生产机械化和自动化的步伐。

因而,受到各先进工业国家的重视,并投入了大量的物力和财力加以研究和应用。

尤其在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用得更为广泛。

机械手一般分为三类。

第一类是不需要人工操作的通用机械手,它是一种独立的不附属于某一主机的装置。

它可以根据任务的需要编制程序,以完成各项规定工作。

它的特点是除具备普通机械的物理性能外,还具备通用机械、记忆智能的三元机械。

第二类是需要人工操作的,称为操作机。

它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电信号操作机械手来进行探测月球、火星等。

第三类是专用机械手,主要附属于自动机床或自动线上,用于解决机床上下料和工件传送。

这种机械手在国外称为“MechanicalHand”,它是为主机服务的,由主机驱动,除少数外,工作程序一般是固定的,因此是专用的。

本项目要求设计的机械手模型可归为第一类,即通用机械手。

1.3机械手应用及组成结构

目前工业机械手主要用于流水线传送、焊接、装配、机床加工、铸造、热处理等方面,无论数量、品种和性能方面都能满足工业生产发展的需要。

在国内主要是发展各方面的机械手,逐步扩大应用范围,以减轻劳动强度,改善作业条件。

在应用专用机械手的同时,相应地发展通用机械手,专用条件还要研制示教机械手、组合机械手等。

将机械手各运动构件,如伸缩、摆动、升降、横移、俯仰等机构,以及用于不同类型的夹紧机构,设计成典型的通用机构,以便根据不同的作业要求,选用不同的典型部件,即可组成不同用途的机械手,即便于设计制造,又便于改换工作,扩大了应用的范围。

同时要提高速度,减少冲击,正确定位,以更好地发挥机械手的作用。

机械手主要由执行机构、驱动机构和控制系统构成。

执行机构包括手部、手臂和躯干。

手部装在手臂前端,可以转动、开闭手指。

机械手手部的构造系统模仿人的手指,分为无关节、固定关节和自由关节三种。

手指的数量又可以分为二指、三指、四指等,其中以二指用得最多。

可根据夾持对象的形状和大小配备多种形状和尺寸的夹头,以适应操作的需要。

本设计采用二指的构造。

手臂的作用是引导手指准确地抓住工件,并运送到所需要的位置上。

为了使机械手能够正确地工作,手臂的三个自由度都需要精确地定位。

总之,机械手的运动离不开直线移动和转动二种,因此它采用的执行机构主要是直线液压缸、摆动液压缸、电液脉冲马达、伺服液压马达、交流伺服电动机、直流伺服电动机和步进电动机等。

躯干是安装手臂、动力源和各种执行机构的机架。

驱动机构主要有四种:

液压驱动、气压驱动、电气驱动和机械驱动。

其中以电气、气动用得最多,占90%以上,液压、机械驱动用得较少。

液压驱动主要是通过液压缸、阀、油箱等实现传动。

气压驱动所采用的元件为气压缸、气马达、气阀等。

一般采用4~6个大气压,个别达到8~10个大气压。

本设计的手爪部分采用气压驱动。

电气驱动时,直线运动可以采用电动机带动丝杠、螺母机构。

通用机械手则考虑采用步进电动机、直流或交流的伺服电动机、变速箱等。

本设计采用步进电动机驱动手臂运动,直流电动机驱动手爪和机械手的底盘旋转运动。

机械驱动只适用于动作固定的场合。

机械手控制的要素包括工作顺序、到达位置、动作时间、运动速度和加减速度等。

机械手的控制分为点位控制和连续轨迹控制两种,目前以点位控制为主,占90%以上。

控制系统可以根据动作的要求,设计采用数字顺序控制,它首先要编制程序加以储存,然后再根据规定的程序,控制机械手工作。

对动作复杂的机械手则采用数字控制系统、小型计算机或微处理机控制的系统。

本设计的控制系统采用小型可编程控制器实现,具有编程简单、修改容易、可靠性高等。

1.4机械手的发展趋势

机械手自二十世纪六十年代初问世以来,经过40多年的发展,现在已经成为制造业生产自动化中重要的机电设备。

目前,机械手技术有了新的发展:

出现了仿人型机械手、微型机械手和微操作系统(如细小工业管道机械手移动探测系统、微型飞行器等)、机械手化机器、智能机械手(不仅可以进行事先设定的动作,还可按照工作状况相应地进行动作,如回避障碍物的移动,作业顺序的规划,有效的动态学习等)。

机械手的应用领域正在向非制造业和服务业方向扩展,并且蓬勃发展的军用机械手也将越来越多地装备部队。

国外方面:

近几年国外工业机械手领域有如下几个发展趋势。

机械手性能不断提高,而单机价格不断下降;

机械结构向模块化、可重构化发展;

控制系统向基于PC机的开放型控制器方向发展;

传感器作用日益重要;

虚拟现实技术在机械手中的作用已从仿真、预演发展到用于过程控制。

国内方面:

目前在一些机种方面,如喷涂机械手、弧焊机械手、点焊机械手、搬运机械手、装配机械手、特种机械手(水下、爬壁、管道、遥控等机械手)基本掌握了机械手操作机的设计制造技术,解决了控制驱动系统的设计和配置,软件的设计和编制等关键技术,还掌握了自动化喷漆线、弧焊自动线及其周边配套设备的全套自动通信、协调控制技术;

在基础元件方面,谐波减速器、机械手焊接电源、焊缝自动跟踪装置也有了突破。

从技术方面来说,我国已经具备了独立自主发展中国机械手技术的基础。

1.5总体设计要求

(1)系统由上料装置、检测传感器、三轴旋转机械手等部分组成,如下图所示

(2)控制系统设计思路

1..系统上电后,2层信号指示灯的红灯亮,各个执行机构保持上电前的状态(即原点)

2.系统设置有2中模式:

手动操作和自动运行操作

3.手动操作:

选择手动操作模式,可手动分别对各个执行机构的运动进行控制,便于设备的调试与检修。

4.自动运行模式:

选择自动运行模式,按启动按钮,系统检测上料装置、机械手等各个执行机构的原点位置,原点位置条件满足则执行步骤5,不满足则系统自动停机。

5.上料装置依次将工件推出,送至上料台,若光电传感器检测到上料台上有工件,则三轴旋转机械手自动将工件搬至皮带运输线,其过程为原点-上料-检测-下降-夹紧-上升-右移-下降-放松-上升-左移原点。

6.自动运行过程中,若按停止按钮,则机械手在处理完已推出工件后自动停机;

若出现故障按下急停按钮时,系统则无条件停止。

7.系统在运行时,2层信号灯的绿灯亮,红灯灭,停机时红灯亮,绿灯灭,故障状态时,红灯闪烁,绿灯灭。

8.机械手在工作过程中不得与设备或运输工件发生碰撞

2PLC的介绍与选择

2.1PLC简介

PLC是ProgrammableLogicController的缩写,即可编程逻辑控制器。

它的结构为;

电源

可编程逻辑控制器的电源在整个系统中起着十分重要的作用。

如果没有一个良好的、可靠的电源系统是无法正常工作的,因此,可编程逻辑控制器的制造商对电源的设计和制造也十分重视。

一般交流电压波动在+10%(+15%)范围内,可以不采取其它措施而将PLC直接连接到交流电网上去

中央处理单元(CPU)

中央处理单元(CPU)是可编程逻辑控制器的控制中枢。

它按照可编程逻辑控制器系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;

检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。

当可编程逻辑控制器投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。

等所有的用户程序执行完毕之后,最后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。

为了进一步提高可编程逻辑控制器的可靠性,对大型可编程逻辑控制器还采用双CPU构成冗余系统,或采用三CPU的表决式系统。

这样,即使某个CPU出现故障,整个系统仍能正常运行。

存储器

存放系统软件的存储器称为系统程序存储器。

存放应用软件的存储器称为用户程序存储器。

输入输出接口电路

(1)现场输入接口电路由光耦合电路和微机的输入接口电路,作用是可编程逻辑控制器与现场控制的接口界面的输入通道。

(2)现场输出接口电路由输出数据寄存器、选通电路和中断请求电路集成,作用可编程逻辑控制器通过现场输出接口电路向现场的执行部件输出相应的控制信号。

2.1.1PLC功能特点

(1)使用方便,编程简单

采用简明的梯形图、逻辑图或语句表等编程语言,而无需计算机知识,因此系统开发周期短,现场调试容易。

另外,可在线修改程序,改变控制方案而不拆动硬件。

(2)功能强,性能价格比高

一台小型PLC内有成百上千个可供用户使用的编程元件,有很强的功能,可以实现非常复杂的控制功能。

它与相同功能的继电器系统相比,具有很高的性能价格比。

PLC可以通过通信联网,实现分散控制,集中管理。

(3)硬件配套齐全,用户使用方便,适应性强

PLC产品已经标准化、系列化、模块化,配备有品种齐全的各种硬件装置供用户选用,用户能灵活方便地进行系统配置,组成不同功能、不同规模的系统。

PLC的安装接线也很方便,一般用接线端子连接外部接线。

PLC有较强的带负载能力,可以直接驱动一般的电磁阀和小型交流接触器。

硬件配置确定后,可以通过修改用户程序,方便快速地适应工艺条件的变化。

(4)可靠性高,抗干扰能力强

传统的继电器控制系统使用了大量的中间继电器、时间继电器,由于触点接触不良,容易出现故障。

PLC用软件代替大量的中间继电器和时间继电器,仅剩下与输入和输出有关的少量硬件元件,接线可减少到继电器控制系统的1/10-1/100,因触点接触不良造成的故障大为减少。

PLC采取了一系列硬件和软件抗干扰措施,具有很强的抗干扰能力,平均无故障时间达到数万小时以上,可以直接用于有强烈干扰的工业生产现场,PLC已被广大用户公认为最可靠的工业控制设备之一。

(5)系统的设计、安装、调试工作量少

PLC用软件功能取代了继电器控制系统中大量的中间继电器、时间继电器、计数器等器件,使控制柜的设计、安装、接线工作量大大减少。

PLC的梯形图程序一般采用顺序控制设计法来设计。

这种编程方法很有规律,很容易掌握。

对于复杂的控制系统,设计梯形图的时间比设计相同功能的继电器系统电路图的时间要少得多。

PLC的用户程序可以在实验室模拟调试,输入信号用小开关来模拟,通过PLC上的发光二极管可观察输出信号的状态。

完成了系统的安装和接线后,在现场的统调过程中发现的问题一般通过修改程序就可以解决,系统的调试时间比继电器系统少得多。

(6)维修工作量小,维修方便

PLC的故障率很低,且有完善的自诊断和显示功能。

PLC或外部的输入装置和执行机构发生故障时,可以根据PLC上的发光二极管或编程器提供的信息迅速地查明故障的原因,用更换模块的方法可以迅速地排除故障。

2.1.2选择规则

在可编程逻辑控制器系统设计时,首先应确定控制方案,下一步工作就是可编程逻辑控制器工程设计选型。

工艺流程的特点和应用要求是设计选型的主要依据。

可编程逻辑控制器及有关设备应是集成的、标准的,按照易于与工业控制系统形成一个整体,易于扩充其功能的原则选型所选用可编程逻辑控制器应是在相关工业领域有投运业绩、成熟可靠的系统,可编程逻辑控制器的系统硬件、软件配置及功能应与装置规模和控制要求相适应。

熟悉可编程序控制器、功能表图及有关的编程语言有利于缩短编程时间,因此,工程设计选型和估算时,应详细分析工艺过程的特点、控制要求,明确控制任务和范围确定所需的操作和动作,然后根据控制要求,估算输入输出点数、所需存储器容量、确定可编程逻辑控制器的功能、外部设备特性等,最后选择有较高性能价格比的可编程逻辑控制器和设计相应的控制系统。

(1)输入输出(I/O)点数的估算

I/O点数估算时应考虑适当的余量,通常根据统计的输入输出点数,再增加10%~20%的可扩展余量后,作为输入输出点数估算数据。

实际订货时,还需根据制造厂商可编程逻辑控制器的产品特点,对输入输出点数进行圆整。

(2)存储器容量的估算

存储器容量是可编程序控制器本身能提供的硬件存储单元大小,程序容量是存储器中用户应用项目使用的存储单元的大小,因此程序容量小于存储器容量。

设计阶段,由于用户应用程序还未编制,因此,程序容量在设计阶段是未知的,需在程序调试之后才知道。

为了设计选型时能对程序容量有一定估算,通常采用存储器容量的估算来替代。

存储器内存容量的估算没有固定的公式,许多文献资料中给出了不同公式,大体上都是按数字量I/O点数的10~15倍,加上模拟I/O点数的100倍,以此数为内存的总字数(16位为一个字),另外再按此数的25%考虑余量。

(3)控制功能的选择

该选择包括运算功能、控制功能、通信功能、编程功能、诊断功能和处理速度等特性的选择。

1)运算功能

简单可编程逻辑控制器的运算功能包括逻辑运算、计时和计数功能;

普通可编程逻辑控制器的运算功能还包括数据移位、比较等运算功能;

较复杂运算功能有代数运算、数据传送等;

大型可编程逻辑控制器中还有模拟量的PID运算和其他高级运算功能。

随着开放系统的出现,在可编程逻辑控制器中都已具有通信功能,有些产品具有与下位机的通信,有些产品具有与同位机或上位机的通信,有些产品还具有与工厂或企业网进行数据通信的功能。

设计选型时应从实际应用的要求出发,合理选用所需的运算功能。

大多数应用场合,只需要逻辑运算和计时计数功能,有些应用需要数据传送和比较,当用于模拟量检测和控制时,才使用代数运算,数值转换和PID运算等。

要显示数据时需要译码和编码等运算。

2)控制功能

控制功能包括PID控制运算、前馈补偿控制运算、比值控制运算等,应根据控制要求确定。

可编程逻辑控制器主要用于顺序逻辑控制,因此,大多数场合常采用单回路或多回路控制器解决模拟量的控制,有时也采用专用的智能输入输出单元完成所需的控制功能,提高可编程逻辑控制器的处理速度和节省存储器容量。

例如采用PID控制单元、高速计数器、带速度补偿的模拟单元、ASC码转换单元等。

3)通信功能

大中型可编程逻辑控制器系统应支持多种现场总线和标准通信协议(如TCP/IP),需要时应能与工厂管理网(TCP/IP)相连接。

通信协议应符合ISO/IEEE通信标准,应是开放的通信网络。

可编程逻辑控制器系统的通信接口应包括串行和并行通信接口、RIO通信口、常用DCS接口等;

大中型可编程逻辑控制器通信总线(含接口设备和电缆)应1:

1冗余配置,通信总线应符合国际标准,通信距离应满足装置实际要求。

可编程逻辑控制器系统的通信网络中,上级的网络通信速率应大于1Mbps,通信负荷不大于60%。

可编程逻辑控制器系统的通信网络主要形式有下列几种形式:

PC为主站,多台同型号可编程逻辑控制器为从站,组成简易可编程逻辑控制器网络;

1台可编程逻辑控制器为主站,其他同型号可编程逻辑控制器为从站,构成主从式可编程逻辑控制器网络;

可编程逻辑控制器网络通过特定网络接口连接到大型DCS中作为DCS的子网;

专用可编程逻辑控制器网络(各厂商的专用可编程逻辑控制器通信网络)。

为减轻CPU通信任务,根据网络组成的实际需要,应选择具有不同通信功能的(如点对点、现场总线、)通信处理器。

4)编程功能

离线编程方式:

可编程逻辑控制器和编程器公用一个CPU,编程器在编程模式时,CPU只为编程器提供服务,不对现场设备进行控制。

完成编程后,编程器切换到运行模式,CPU对现场设备进行控制,不能进行编程。

离线编程方式可降低系统成本,但使用和调试不方便。

在线编程方式:

CPU和编程器有各自的CPU,主机CPU负责现场控制,并在一个扫描周期内与编程器进行数据交换,编程器把在线编制的程序或数据发送到主机,下一扫描周期,主机就根据新收到的程序运行。

这种方式成本较高,但系统调试和操作方便,在大中型可编程逻辑控制器中常采用。

五种标准化编程语言:

顺序功能图(SFC)、梯形图(LD)、功能模块图(FBD)三种图形化语言和语句表(IL)、结构文本(ST)两种文本语言。

选用的编程语言应遵守其标准(IEC6113123),同时,还应支持多种语言编程形式,如C,Basic等,以满足特殊控制场合的控制要求。

5)诊断功能

可编程逻辑控制器的诊断功能包括硬件和软件的诊断。

硬件诊断通过硬件的逻辑判断确定硬件的故障位置,软件诊断分内诊断和外诊断。

通过软件对PLC内部的性能和功能进行诊断是内诊断,通过软件对可编程逻辑控制器的CPU与外部输入输出等部件信息交换功能进行诊断是外诊断。

可编程逻辑控制器的诊断功能的强弱,直接影响对操作和维护人员技术能力的要求,并影响平均维修时间。

6)处理速度

可编程逻辑控制器采用扫描方式工作。

从实时性要求来看,处理速度应越快越好,如果信号持续时间小于扫描时间,则可编程逻辑控制器将扫描不到该信号,造成信号数据的丢失。

处理速度与用户程序的长度、CPU处理速度、软件质量等有关。

可编程逻辑控制器接点的响应快、速度高,每条二进制指令执行时间约0.2~0.4Ls,因此能适应控制要求高、相应要求快的应用需要。

扫描周期(处理器扫描周期)应满足:

小型可编程逻辑控制器的扫描时间不大于0.5ms/K;

大中型可编程逻辑控制器的扫描时间不大于0.2ms/K。

2.1.3可编程逻辑控制器的类型

可编程逻辑控制器按结构分为整体型和模块型两类,按应用环境分为现场安装和控制室安装两类;

按CPU字长分为1位、4位、8位、16位、32位、64位等。

从应用角度出发,通常可按控制功能或输入输出点数选型。

整体型可编程逻辑控制器的I/O点数固定,因此用户选择的余地较小,用于小型控制系统;

模块型可编程逻辑控制器提供多种I/O卡件或插卡,因此用户可较合理地选择和配置控制系统的I/O点数,功能扩展方便灵活,一般用于大中型控制系统。

2.1.4PLC输入/输出类型

开关量

开关量主要指开入量和开出量,是指一个装置所带的辅助点,譬如变压器的温控器所带的继电器的辅助点(变压器超温后变位)、阀门凸轮开关所带的辅助点(阀门开关后变位),接触器所带的辅助点(接触器动作后变位)、热继电器(热继电器动作后变位),这些点一般都传给PLC或综保装置,电源一般是由PLC或综保装置提供的,自己本身不带电源,所以叫无源接点,也叫PLC或综保装置的开入量。

1、数字量及模拟量

在时间上和数量上都是离散的物理量称为数字量。

把表示数字量的信号叫数字信号。

把工作在数字信号下的电子电路叫数字电路。

在时间上或数值上都是连续的物理量称为模拟量。

把表示模拟量的信号叫模拟信号。

把工作在模拟信号下的电子电路叫模拟电路。

2.1.5转换原理

数模转换器是将数字信号转换为模拟信号的系统,一般用低通滤波即可以实现。

数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。

根据信号与系统的理论,数字阶梯状信号可以看作理想冲激采样信号和矩形脉冲信号的卷积,那么由卷积定理,数字信号的频谱就是冲激采样信号的频谱与矩形脉冲频谱(即Sa函数)的乘积。

这样,用Sa函数的倒数作为频谱特性补偿,由数字信号便可恢复为采样信号。

由采样定理,采样信号的频谱经理想低通滤波便得到原来模拟信号的频谱。

一般实现时,不是直接依据这些原理,因为尖锐的采样信号很难获得,因此,这两次滤波(Sa函数和理想低通)可以合并(级联),并且由于这各系统的滤波特性是物理不可实现的,所以在真实的系统中只能近似完成。

模数转换器是将模拟信号转换成数字信号的系统,是一个滤波、采样保持和编码的过程。

模拟信号经带限滤波,采样保持电路,变为阶梯形状信号,然后通过编码器,使得阶梯状信号中的各个电平变为二进制码。

2.2PLC选型

三菱FX系列可编程控制器是当今国内,最具特色、最具代表性的微型PLC。

在FX中,除基本的指令表编程方式外,还可以采用梯形图编程及对应机械

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1