回溯算法Word下载.docx

上传人:b****5 文档编号:20357011 上传时间:2023-01-22 格式:DOCX 页数:15 大小:28.06KB
下载 相关 举报
回溯算法Word下载.docx_第1页
第1页 / 共15页
回溯算法Word下载.docx_第2页
第2页 / 共15页
回溯算法Word下载.docx_第3页
第3页 / 共15页
回溯算法Word下载.docx_第4页
第4页 / 共15页
回溯算法Word下载.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

回溯算法Word下载.docx

《回溯算法Word下载.docx》由会员分享,可在线阅读,更多相关《回溯算法Word下载.docx(15页珍藏版)》请在冰豆网上搜索。

回溯算法Word下载.docx

当我们已经找到了答案或者回溯尽了所有的活节点时,搜索过程结束。

例4-1[迷宫老鼠]考察图16-3a的矩阵中给出的3×

3的“迷宫老鼠”问题。

我们将利用图16-1给出的解空间图来搜索迷宫。

从迷宫的入口到出口的每一条路径都与图16-1中从(1,1)到(3,3)的一条路径相对应。

然而,图16-1中有些从(1,1)到(3,3)的路径却不是迷宫中从入口到出口的路径。

搜索从点(1,1)开始,该点是目前唯一的活节点,它也是一个E-节点。

为避免再次走过这个位置,置maze(1,1)为1。

从这个位置,能移动到(1,2)或(2,1)两个位置。

对于本例,两种移动都是可行的,因为在每一个位置都有一个值0。

假定选择移动到(1,2),maze(1,2)被置为1以避免再次经过该点。

迷宫当前状态如图16-3b所示。

这时有两个活节点(1,1)(1,2)。

(1,2)成为E-节点。

在图16-1中从当前E-节点开始有3个可能的移动,其中两个是不可行的,因为迷宫在这些位置上的值为1。

唯一可行的移动是(1,3)。

移动到这个位置,并置maze(1,3)为1以避免再次经过该点,此时迷宫状态为16-3c。

图16-1中,从(1,3)出发有两个可能的移动,但没有一个是可行的。

所以E-节点(1,3)死亡,回溯到最近被检查的活节点(1,2)。

在这个位置也没有可行的移动,故这个节点也死亡了。

唯一留下的活节点是(1,1)。

这个节点再次变为E-节点,它可移动到(2,1)。

现在活节点为(1,1),(2,1)。

继续下去,能到达点(3,3)。

此时,活节点表为(1,1),(2,1),(3,1),(3,2),(3,3),这即是到达出口的路径。

程序5-13是一个在迷宫中寻找路径的回溯算法。

例4-2[0/1背包问题]考察如下背包问题:

n=3,w=[20,15,15],p=[40,25,25]且c=30。

从根节点开始搜索图16-2中的树。

根节点是当前唯一的活节点,也是E-节点,从这里能够移动到B或C点。

假设移动到B,则活节点为A和B。

B是当前E-节点。

在节点B,剩下的容量r为10,而收益cp为40。

从B点,能移动到D或E。

移到D是不可行的,因为移到D所需的容量w2为15。

到E的移动是可行的,因为在这个移动中没有占用任何容量。

E变成新的E-节点。

这时活节点为A,B,E。

在节点E,r=10,cp=40。

从E,有两种可能移动(到J和K),到J的移动是不可行的,而到K的移动是可行的。

节点K变成了新的E-节点。

因为K是一个叶子,所以得到一个可行的解。

这个解的收益为cp=40。

x的值由从根到K的路径来决定。

这个路径(A,B,E,K)也是此时的活节点序列。

既然不能进一步扩充K,K节点死亡,回溯到E,而E也不能进一步扩充,它也死亡了。

接着,回溯到B,它也死亡了,A再次变为E-节点。

它可被进一步扩充,到达节点C。

此时r=30,cp=0。

从C点能够移动到F或G。

假定移动到F。

F变为新的E-节点并且活节点为A,C,F。

在F,r=15,cp=25。

从F点,能移动到L或M。

假定移动到L。

此时r=0,cp=50。

既然L是一个叶节点,它表示了一个比目前找到的最优解(即节点K)更好的可行解,我们把这个解作为最优解。

节点L死亡,回溯到节点F。

继续下去,搜索整棵树。

在搜索期间发现的最优解即为最后的解。

例4-3[旅行商问题]在这个问题中,给出一个n顶点网络(有向或无向),要求找出一个包含所有n个顶点的具有最小耗费的环路。

任何一个包含网络中所有n个顶点的环路被称作一个旅行(tour)。

在旅行商问题中,要设法找到一条最小耗费的旅行。

图16-4给出了一个四顶点网络。

在这个网络中,一些旅行如下:

1,2,4,3,1;

1,3,2,4,1和1,4,3,2,1。

旅行2,4,3,1,2;

4,3,1,2,4和3,1,2,4,3和旅行1,2,4,3,1一样。

而旅行1,3,4,2,1是旅行1,2,4,3,1的“逆”。

旅行1,2,4,3,1的耗费为66;

而1,3,2,4,1的耗费为25;

1,4,3,2,1为59。

故1,3,2,4,1是该网络中最小耗费的旅行。

顾名思义,旅行商问题可被用来模拟现实生活中旅行商所要旅行的地区问题。

顶点表示旅行

商所要旅行的城市(包括起点)。

边的耗费给出了在两个城市旅行所需的时间(或花费)。

旅行表示当旅行商游览了所有城市再回到出发点时所走的路线。

旅行商问题还可用来模拟其他问题。

假定要在一个金属薄片或印刷电路板上钻许多孔。

孔的位置已知。

这些孔由一个机器钻头来钻,它从起始位置开始,移动到每一个钻孔位置钻孔,然后回到起始位置。

总共花的时间是钻所有孔的时间与钻头移动的时间。

钻所有孔所需的时间独立于钻孔顺序。

然而,钻头移动时间是钻头移动距离的函数。

因此,希望找到最短的移动路径。

另有一个例子,考察一个批量生产的环境,其中有一个特殊的机器可用来生产n个不同的产品。

利用一个生产循环不断地生产这些产品。

在一个循环中,所有n个产品被顺序生产出来,然后再开始下一个循环。

在下一个循环中,又采用了同样的生产顺序。

例如,如果这台机器被用来顺序为小汽车喷红、白、蓝漆,那么在为蓝色小汽车喷漆之后,我们又开始了新一轮循环,为红色小汽车喷漆,然后是白色小汽车、蓝色小汽车、红色小汽车,..,如此下去。

一个循环的花费包括生产一个循环中的产品所需的花费以及循环中从一个产品转变到另一个产品的花费。

虽然生产产品的花费独立于产品生产顺序,但循环中从生产一个产品转变到生产另一个产品的花费却与顺序有关。

为了使耗费最小化,可以定义一个有向图,图中的顶点表示产品,边<(i,j)>上的耗费值为生产过程中从产品i转变到产品j所需的耗费。

一个最小耗费的旅行定义了一个最小耗费的生产循环。

既然旅行是包含所有顶点的一个循环,故可以把任意一个点作为起点(因此也是终点)。

针对图16-4,任意选取点1作为起点和终点,则每一个旅行可用顶点序列1,v2,.,vn,1来描述,

v2,.,vn是(2,3,.,n)的一个排列。

可能的旅行可用一个树来描述,其中每一个从根到叶的路

径定义了一个旅行。

图16-5给出了一棵表示四顶点网络的树。

从根到叶的路径中各边的标号定义了一个旅行(还要附加1作为终点)。

例如,到节点L的路径表示了旅行1,2,3,4,1,而到节点O的路径表示了旅行1,3,4,2,1。

网络中的每一个旅行都由树中的一条从根到叶的确定路径来表示。

因此,树中叶的数目为(n-1)!

回溯算法将用深度优先方式从根节点开始,通过搜索解空间树发现一个最小耗费的旅行。

对图16-4的网络,利用图16-5的解空间树,一个可能的搜索为ABCFL。

在L点,旅行1,2,3,4,1作为当前最好的旅行被记录下来。

它的耗费是59。

从L点回溯到活节点F。

由于F没有未被检查的孩子,所以它成为死节点,回溯到C点。

C变为E-节点,向前移动到G,然后是M。

这样构造出了旅行1,2,4,3,1,它的耗费是66。

既然它不比当前的最佳旅行好,抛弃它并回溯到G,然后是C,B。

从B点,搜索向前移动到D,然后是H,N。

这个旅行1,3,2,4,1的耗费是25,比当前的最佳旅行好,把它作为当前的最好旅行。

从N点,搜索回溯到H,然后是D。

在D点,再次向前移动,到达O点。

如此继续下去,可搜索完整个树,得出1,3,2,4,1是最少耗费的旅行。

当要求解的问题需要根据n个元素的一个子集来优化某些函数时,解空间树被称作子集树(subsettree)。

所以对有n个对象的0/1背包问题来说,它的解空间树就是一个子集树。

这样一棵树有2n个叶节点,全部节点有2n+1-1个。

因此,每一个对树中所有节点进行遍历的算法都必须耗时W(2n)。

当要求解的问题需要根据一个n元素的排列来优化某些函数时,解空间树被称作排列树(permutationtree)。

这样的树有n!

个叶节点,所以每一个遍历树中所有节点的算法都必须耗时W(n!

)。

图16-5中的树是顶点{2,3,4}的最佳排列的解空间树,顶点1是旅行的起点和终点。

通过确定一个新近到达的节点能否导致一个比当前最优解还要好的解,可加速对最优解的搜索。

如果不能,则移动到该节点的任何一个子树都是无意义的,这个节点可被立即杀死,用来杀死活节点的策略称为限界函数(boundingfunction)。

在例16-2中,可使用如下限界函数:

杀死代表不可行解决方案的节点;

对于旅行商问题,可使用如下限界函数:

如果目前建立的部分旅行的耗费不少于当前最佳路径的耗费,则杀死当前节点。

如果在图16-4的例子中使用该限界函数,那么当到达节点I时,已经找到了具有耗费25的1,3,2,4,1的旅行。

在节点I,部分旅行1,3,4的耗费为26,若旅行通过该节点,那么不能找到一个耗费小于25的旅行,故搜索以I为根节点的子树毫无意义。

小结

回溯方法的步骤如下:

1)定义一个解空间,它包含问题的解。

2)用适于搜索的方式组织该空间。

3)用深度优先法搜索该空间,利用限界函数避免移动到不可能产生解的子空间。

回溯算法的一个有趣的特性是在搜索执行的同时产生解空间。

在搜索期间的任何时刻,仅保留从开始节点到当前E-节点的路径。

因此,回溯算法的空间需求为O(从开始节点起最长路径的长度)。

这个特性非常重要,因为解空间的大小通常是最长路径长度的指数或阶乘。

所以如果要存储全部解空间的话,再多的空间也不够用。

练习

1.考察如下0/1背包问题:

n=4,w=[20,25,15,35],p=[40,49,25,60],c=62。

1)画出该0/1背包问题的解空间树。

2)对该树运用回溯算法(利用给出的ps,ws,c值),依回溯算法遍历节点的顺序标记节点。

确定回溯算法未遍历的节点。

2.1)当n=5时,画出旅行商问题的解空间树。

2)在该树上,运用回溯算法(使用图16-6的例子)。

依回溯算法遍历节点的顺序标记节点。

确定未被遍历的节点。

3.每周六,Mary和Joe都在一起打乒乓球。

她们每人都有一个装有120个球的篮子。

这样一直打下去,直到两个篮子为空。

然后她们需要从球桌周围拾起240个球,放入各自

的篮子。

Mary只拾她这边的球,而Joe拾剩下的球。

描述如何用旅行商问题帮助Mary和

Joe决定她们拾球的顺序以便她们能走最少的路径。

4.2应用

4.2.1货箱装船

1.问题

在1.3节中,考察了用最大数量的货箱装船的问题。

现在对该问题做一些改动。

在新问题中,有两艘船,n个货箱。

第一艘船的载重量是c1,第二艘船的载重量是c2,wi是货箱i的重量且

n&

aring;

i=1wi≤c1+c2。

我们希望确定是否有一种可将所有n个货箱全部装船的方法。

若有的话,找出该方法。

例4-4当n=3,c1=c2=50,w=[10,40,40]时,可将货箱1,2装到第一艘船上,货箱3装到第二艘船上。

如果w=[20,40,40],则无法将货箱全部装船。

当n&

i=1wi=c1+c2时,两艘船的装载问题等价于子集之和(sum-of-subset)问题,即有n个数字,要求找到一个子集(如果存在的话)使它的和为c1。

当c1=c2且n&

i=1wi=2c1时,两艘船的装载问题等价于分割问题(partitionproblem),即有n个数字ai,(1≤i≤n),要求找到一个子集(若存在的话),使得子集之和为(n&

i=1ai)/2。

分割问题和子集之和问题都是NP-复杂问题。

而且即使问题被限制为整型数字,它们仍是NP-复杂问题。

所以不能期望在多项式时间内解决两艘船的装载问题。

当存在一种方法能够装载所有n个货箱时,可以验证以下的装船策略可以获得成功:

1)尽可能地将第一艘船装至它的重量极限;

2)将剩余货箱装到第二艘船。

为了尽可能地将第一艘船装满,需要选择一个货箱的子集,它们的总重量尽可能接近c1。

这个选择可通过求解0/1背包问题来实现,即寻找max(n&

i=1wixi),其中n&

i=1wixi≤c1,xi&

Icirc;

{0,1},1≤i≤n。

当重量是整数时,可用15.2节的动态规划方法确定第一艘船的最佳装载。

用元组方法所需时间为O(min{c1,2n})。

可以使用回溯方法设计一个复杂性为O(2n)的算法,在有些实例中,该方法比动态规划算法要好。

2.第一种回溯算法

既然想要找到一个重量的子集,使子集之和尽量接近c1,那么可以使用一个子集空间,并将其组织成如图16-2那样的二叉树。

可用深度优先的方法搜索该解空间以求得最优解。

使用限界函数去阻止不可能获得解答的节点的扩张。

如果Z是树的j+1层的一个节点,那么从根到O的路径定义了xi(1≤i≤j)的值。

使用这些值,定义cw(当前重量)为n&

i=1wixi。

若cw>

c1,则以O为根的子树不能产生一个可行的解答。

可将这个测试作为限界函数。

当且仅当一个节点的cw值大于c1时,定义它是不可行的。

例4-5假定n=4,w=[8,6,2,3],c1=12。

解空间树为图16-2的树再加上一层节点。

搜索从根A开始且cw=0。

若移动到左孩子B则cw=8,cw≤c1=12。

以B为根的子树包含一个可行的节点,故移动到节点B。

从节点B不能移动到节点D,因为cw+w2>

c1。

移动到节点E,这个移动未改变cw。

下一步为节点J,cw=10。

J的左孩子的cw值为13,超出了c1,故搜索不能移动到J的左孩子。

可移动到J的右孩子,它是一个叶节点。

至此,已找到了一个子集,它的cw=10。

xi的值由从A到J的右孩子的路径获得,其值为[1,0,1,0]。

回溯算法接着回溯到J,然后是E。

从E,再次沿着树向下移动到节点K,此时cw=8。

移动到它的左子树,有cw=11。

既然已到达了一个叶节点,就看是否cw的值大于当前的最优cw值。

结果确实大于最优值,所以这个叶节点表示了一个比[1,0,1,0]更好的解决方案。

到该节点的路径决定了x的值[1,0,0,1]。

从该叶节点,回溯到节点K,现在移动到K的右孩子,一个具有cw=8的叶节点。

这个叶节点中没有比当前最优cw值还好的cw值,所以回溯到K,E,B直到A。

从根节点开始,沿树继续向下移动。

算法将移动到C并搜索它的子树。

当使用前述的限界函数时,便产生了程序16-1所示的回溯算法。

函数MaxLoading返回≤c的最大子集之和,但它不能找到产生该和的子集。

后面将改进代码以便找到这个子集。

MaxLoading调用了一个递归函数maxLoading,它是类Loading的一个成员,定义Loading类是为了减少MaxLoading中的参数个数。

maxLoading

(1)实际执行解空间的搜索。

MaxLoading(i)搜索以i层节点(该节点已被隐式确定)为根的子树。

从根到该节点的路径定义的子解答有一个重量值cw,目前最优解答的重量为bestw,这些变量以及与类Loading的一个成员相关联的其他变量,均由MaxLoading初始化。

程序16-1第一种回溯算法

template<

classT>

classLoading{

friendMaxLoading(T[],T,int);

private:

voidmaxLoading(inti);

intn;

//货箱数目

T*w,//货箱重量数组

c,//第一艘船的容量

cw,//当前装载的重量

bestw;

//目前最优装载的重量

};

voidLoading<

T>

:

maxLoading(inti)

{//从第i层节点搜索

if(i>

n){//位于叶节点

if(cw>

bestw)bestw=cw;

return;

}

//检查子树

if(cw+w[i]<

=c){//尝试x[i]=1

cw+=w[i];

maxLoading(i+1);

cw-=w[i];

}

maxLoading(i+1);

//尝试x[i]=0

TMaxLoading(Tw[],Tc,intn)

{//返回最优装载的重量

Loading<

X;

//初始化X

X.w=w;

X.c=c;

X.n=n;

X.bestw=0;

X.cw=0;

//计算最优装载的重量

X.maxLoading

(1);

returnX.bestw;

如果i>n,则到达了叶节点。

被叶节点定义的解答有重量cw,它一定≤c,因为搜索不会移动到不可行的节点。

若cw>

bestw,则目前最优解答的值被更新。

当i≤n时,我们处在有两个孩子的节点Z上。

左孩子表示x[i]=1的情况,只有cw+w[i]≤c时,才能移到这里。

当移动到左孩子时,cw被置为cw+w[i],且到达一个i+1层的节点。

以该节点为根的子树被递归搜索。

当搜索完成时,回到节点Z。

为了得到Z的cw值,需用当前的cw值减去w[i],Z的右子树还未搜索。

既然这个子树表示x[i]=0的情况,所以无需进行可行性检查就可移动到该子树,因为一个可行节点的右孩子总是可行的。

注意:

解空间树未被maxLoading显示构造。

函数maxLoading在它到达的每一个节点上花费

(1)时间。

到达的节点数量为O(2n),所以复杂性为O(2n)。

这个函数使用的递归栈空间为(n)。

3.第二种回溯方法

通过不移动到不可能包含比当前最优解还要好的解的右子树,能提高函数maxLoading的性能。

令bestw为目前最优解的重量,Z为解空间树的第i层的一个节点,cw的定义如前。

以Z为根的子树中没有叶节点的重量会超过cw+r,其中r=n&

j=i+1w[j]为剩余货箱的重量。

因此,当cw+r≤bestw时,没有必要去搜索Z的右子树。

例4-6令n,w,c1的值与例4-5中相同。

用新的限界函数,搜索将像原来那样向前进行直至到达第一个叶节点J(它是J的右孩子)。

bestw被置为10。

回溯到E,然后向下移动到K的左孩子,此时bestw被更新为11。

我们没有移动到K的右孩子,因为在右孩子节点cw=8,r=0,cw+r≤bestw。

回溯到节点A。

同样,不必移动到右孩子C,因为在C点cw=0,r=11且cw+r≤bestw。

加强了条件的限界函数避免了对A的右子树及K的右子树的搜索。

当使用加强了条件的限

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 研究生入学考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1