la医师上岗培训重点内容doc.docx
《la医师上岗培训重点内容doc.docx》由会员分享,可在线阅读,更多相关《la医师上岗培训重点内容doc.docx(44页珍藏版)》请在冰豆网上搜索。
la医师上岗培训重点内容doc
第一篇总论
1.放射治疗在肿瘤治疗中的地位:
45%的恶性肿瘤可以治愈,其中手术治愈22%,放射治疗治愈18%,化学药物治疗治愈5%。
一些国家的恶性肿瘤诊断后,治疗的5年生存率为50%。
50%的放射治疗为根治性放射治疗。
2.放射肿瘤科及放射肿瘤医师:
放射肿瘤科是一个临床学科,和肿瘤内科、肿瘤外科并列
3.放射敏感性与放射治愈性:
放射敏感性的四个主要因素是肿瘤细胞的固有敏感性,是否乏氧细胞,乏氧克隆细胞所占的比例,肿瘤放射损伤的修复。
放射治愈性是指治愈了原发及区域内转移的肿瘤。
中等敏感的肿瘤放疗效果好。
4.正常组织的耐受剂量:
肾脏20为50%,肝脏25?
30为33%,肺脏单肺20为50%,30双肺20为30%化疗同步28%,5为60%,脊髓45为0%,小肠50100cm2、65100cm2、角膜50整个角膜、60整个角膜、脑干50为0%,皮肤55100cm2、70100cm2,股骨头505%,骨头、大脑60Gy为50%,心脏4030%,3040%。
5.分割照射的基础是正常组织的修复,肿瘤细胞的再氧和,肿瘤细胞的再增殖。
超分割的目的是保护正常组织,加速超分割和后程加速超分割的目的是克服肿瘤细胞的再增殖。
6.亚临床病灶的定义:
一般的临床检查方法不能发现,肉眼也不能看到,显微镜下也是阴性的病灶,常常位于肿瘤主体的周围或远隔部位,有时是多发病灶。
鳞癌的亚临床病灶的照射剂量为50GY。
7.局部控制对远处转移影像的认识:
放射治疗是一个局部或区域治疗手段,提高放射治疗的疗效只能是提高局部或区域控制率。
局部控制率越高,远处转移率越低。
8.现代近距离治疗的特点:
a、后装;b、单一高活度的放射源,源运动由微机控制的步进马达驱动;c、放射源微型化;d、剂量分布由计算机进行计算
9.现代近距离放射治疗常用的放射源:
永久性插植的源包括碘-125和钯-103,腔内和管内照射主要用钴-60,而铱-192由于能量低,便于防护,所以更常用。
而铯-137已少用,因为它活度低,体积大。
10.近距离治疗剂量率的划分:
低剂量率(2~4GY/H),中剂量率(4~12GY/H),高剂量率(>12GY/H),使用高剂量率近距离治疗肿瘤时,总剂量低于低剂量率近距离治疗。
11.近距离治疗的适应症:
主要用于外照射后复发或残存的病变,或者是小病变,且没有淋巴结转移,或淋巴结转移已经控制,无远地转移。
内容包括:
腔内或管内照射,组织间照射,术中照射,模照射。
禁忌症:
靶体积过大(易发生坏死),肿瘤侵犯骨(治愈机会小,且容易造成骨坏死),肿瘤界限不清,肿瘤体积无法确定。
12.综合治疗:
术前放疗----使肿瘤缩小,减少播散,但缺乏病理指导,延迟手术,用于头颈部癌,肺尖癌等;术中放疗----靶区清楚,很好的保护正常组织,但只能照射一次,不符合分次照射原则,用于胃癌;术前后放射治疗用于头颈部癌,软组织肉瘤。
13.部分术后放疗间隔:
肾母细胞瘤术后不要超过10天放疗,最好48小时内,一些良性病如疤痕疙瘩要求手术后拆线当天起放疗,预防骨关节创伤或手术后的异位骨化应在术后1~2天开始,最迟不超过4天。
14.电离辐射诱发的肿瘤,最常见的是发生于结缔组织的肉瘤,上皮型癌肿中则以乳腺癌和肺癌常见。
15.电离辐射诱发的恶性肿瘤(radiation-inducedcarcinogenesisRIC)之一---------电离辐射诱发的肉瘤(radiation-inducedsarcomaRIS)的诊断标准:
1.RIS所发生曾接受照射的区域,在照射前组织病理学和/或临床影像学均无已存在肉瘤的证据,以尽可能排除与放射治疗无关诱因所导致的自发性肉瘤;2.RIS有组织病理学的证实,明确为与原治疗肿瘤不同的病理诊断,组织形态学的描述不能RIS的鉴别;3.曾接受照射,RIS发生于5%等剂量线范围内;4.一般有相对为长的潜伏期(10~20年),但亦接受<2年的短暂潜伏期。
第二篇放射物理学
第一章照射剂量学
1.照射野:
由准直器确定的射线束的边界,并垂直于射线束中心轴的射线束平面。
有两种定义方法:
一是几何学照射野,即放射源的前表面经准直器在模体表面的投影;二是物理学照射野,即以射线束中心轴剂量为100%,照射野两边50%等剂量线之间的距离。
2.源皮距(SSD):
从放射源前表面沿射线束中心轴到受照物体表面的距离。
3.源轴距(SAD):
从放射源前表面沿射线束中心轴到等中心的距离。
4.参考点:
模体中沿射线束中心轴深度剂量为100%的位置。
对于低于400KV的X线来说,该点定义为模体表面。
5.射线质:
用于表示射线束在水模中穿射本领的术语,该质是带电和非带电粒子能量的函数。
6.百分深度剂量(percentagedepthdosePDD):
水模体中射线束中心轴某一深度的吸收剂量与参考深度的吸收剂量的比值。
影响因素包括:
射线能量,照射野,源皮距和深度。
各个放疗中心应根据机型的不同具体测量和建立不同射线束的百分深度剂量数据。
7.组织空气比(tissueairratioTAR):
水模体射线束中心轴某一深度的吸收剂量,与空气中距离放射源相同距离处,在一刚好建立电子平衡的模体材料中吸收剂量的比值。
若深度正好位于参考深度d0处,其组织空气比通常取名为反向散射因子或峰值散射因子。
影响因素包括:
射线能量,照射野,深度。
8.组织模体比(tissuephantomratioTPR):
水模中射线束中心轴某一深度的吸收剂量,与距放射源相同距离的同一位置,校准深度处吸收剂量的比值。
校准深度的选择低于10MV的X线为5cm,10~25MV的X线为7cm。
影响因素同TAR。
9.组织最大比(tissuemaximumratioTMR):
水模中射线束中心轴某一深度的吸收剂量,与距放射源相同距离的同一位置,参考深度处吸收剂量的比值。
影响因素同TAR。
10.散射空气比(scatterairratioSAR):
水模中某一深度的散射线剂量,与空间同一点空气吸收剂量的比值,等于某一点某一放射野的组织空气比减去零野的组织空气比,若该点为最大剂量点,则这时称散射最大剂量比(scattermaximunratioSMR)。
11.X线百分深度剂量的影响因素:
1.能量和深度:
对于中低能X线来说,随着深度增加,百分深度剂量减小,下降速率较快;对于高能X线来说,由于剂量建成效应,百分深度剂量先增大后减小,减小的速率较慢;2.照射野:
由于照射野中某一点的吸收剂量包有效原辐射(放射源原射线和经准直器产生的散射线)和有效原辐射在模体中产生的散射线,而高能X射线散射方向更多的是沿其入射方向向前散射,中低能X线旁向散射多见,所以,中低能X射线的百分深度剂量随照射野的变化比高能X线显著;3.源皮距:
由于平方反比定律即近源处剂量减少的速率大于远源处的影响,所以百分深度剂量随源皮距的增加而增加。
12.等效方野:
如果两个野的面积周长比相等,则两野等效,适用条件为:
长方形照射野的边长不超过20cm,面积周长比不大于4,经计算,c=2ab/(a+b)。
等效方野代表不同照射野下,散射线的贡献量相等。
13.照射野的平坦度与对称性:
照射野的平坦度定义为标准源皮距条件或等中心条件下,模体中10cm深度处,照射野80%宽度内,最大或最小剂量与中心轴剂量的偏差值,应好于±3%,照射野对称性的定义为与平坦度同样条件下,中心轴对称任一两点的剂量差与中心轴剂量的比值,应好于±3%。
14.半影:
照射野边缘80%与20%等剂量曲线之间的宽度,表示物理半影的大小。
半影分为几何半影、穿射半影和散射半影。
几何半影是由射源的大小、源到准直器的距离和源皮距形成的,穿射半影受准直器漏射线影响,散射半影是准直器和模体内的散射线形成的
15.等剂量曲线与能量的关系:
低能射线的等剂量曲线深度浅,较为弯曲,边缘中断,低值等剂量曲线向外膨胀,有较大的半影区;高能射线的等剂量曲线深度较深,较为平直,边缘连续,半影区小。
16.楔形角:
模体内特定深度,楔形照射野等剂量曲线与1/2照射野宽的交点连线和射线束中心轴垂直线的夹角。
目前特定深度的选择尚有争议,普遍的做法是选择模体中10cm处。
17.楔形因子:
模体内射线束中心轴某一深度d处楔形照射野和开放照射野分别照射时吸收剂量的比值。
楔形板多为不锈钢或铅材料制成,楔形板对X射线有“硬化”作用,低能射线更明显,对高能射线影响小。
楔形板分为物理楔形板和虚拟楔形板,物理楔形板的角度有15,30,45,60四种。
18.高能电子束百分深度剂量分布的特点:
1.组成:
剂量建成区、高剂量坪区、剂量跌落区和X射线污染区;2.剂量建成效应不明显,表面剂量高,多在75%~80%以上,并随剂量增加而增加,百分深度剂量很快达到最大点,由于电子容易散射的缘故;3.剂量跌落用剂量梯度G度量,一般在2~2.5之间。
19.有效治疗深度(Rt):
皮下至85%最大剂量点处的深度。
20.高能电子束百分深度剂量的主要影响因素:
1.能量,随着射线能量的增加,表面剂量增加,高剂量坪区变宽,剂量梯度变小,X线污染增加。
电子束的临床剂量学优点逐渐消失;2.照射野,照射野较小时,百分深度剂量随深度增加迅速减小,照射野较大时,百分深度剂量不再随设野的变化而变化,一般条件下,当照射野的直径大于电子束射程的1/2时,百分深度剂量随照射野增大变化极微,低能时,由于射程较短,照射野对百分深度剂量的影响较小,高能时,影响较大;3.源皮距,固定源皮距照射。
21.电子束等剂量曲线分布的特点:
随深度增加,低值等剂量曲线向外侧扩张,高值等剂量曲线向内侧收缩,并随着能量的变高而更明显,野越大,曲线越平直。
22.选择电子束照射野的一般办法:
表面位置的照射野应按照靶区的最大横径而适当扩大,根据L90/L50≥0.85的规定,所选择电子束设野应至少等于或大于靶区横径的1.18倍,即射野大小应比计划靶区横径大20%。
并在此基础上,根据靶区最深部分的宽度的情况射野再放0.5~1.0cm。
23.电子束挡铅厚度的确定:
最低挡铅厚度(mm)应是电子束能量(Mev)数值的二分之一,同时从安全考虑,可将挡铅厚度再增加1mm。
内挡铅一般选用低原子序数材料,如有机玻璃等。
24.钴60的半衰期为5.26年,半值厚12mm,铱192的半衰期为73.83天,半值厚3mm,铱源能谱复杂,γ射线平均能量为350kev,由于铱源γ射线能量范围使其在水中指数衰减率恰好被散射线建成所补偿,在距离5cm范围内,剂量率与距离的平方的乘积近似不变,不遵循平方反比定律。
第二章近距离剂量学基础
1.宫颈癌时AB点的定义:
A点即阴道穹隆垂直向上两公分,与子宫中轴线外两公分交叉处,解剖学上相当于子宫动脉和输尿管交叉处,自A点水平向外延伸3共分处为B点,相当于闭孔淋巴结节区。
这个定义为曼彻斯特系统提出。
2.妇瘤腔内照射的剂量学系统:
包括巴黎系统,斯德哥尔摩系统,曼彻斯特系统。
ICRU38号报告补充定义:
直肠剂量参考点(R)为阴道容器轴线与阴道后壁交点后0.5cm处;膀胱剂量参考点(BL)为仰位投影片造影剂积聚的最低点。
3.巴黎系统的布源规则:
要求植入的放射源无论是铱丝还是等距封装在塑管中的串源均呈直线型,彼此相互平行,各线源等分中心位于同一平面,各源相互等间距,排布呈正方形或等边三角形,源的线性活度均匀且等值,线源与过中心点的平面垂直。
剂量基准点的定义:
正三角形各边垂直平分线的交点或正方形对角线的交点,改点时源(针管)之间剂量最低的位置。
活性长度AL>靶区长度L。
4.布进源剂量学系统(巴黎系统的扩展)的布源规则:
各驻留位照射时间不再相等,而是中间偏低,外周加长;活性长度不仅没有必要超出靶区长度,甚至较靶区长度更短;参考剂量与基准剂量的关系仍然维持RD=0.85BD的关系。
5.ICRU58号报告:
针对组织间插值治疗中吸收剂量的体积参数的表述作出了明确的建议。
6.管内照射参考点的设置:
管腔治疗的剂量参考点大多相对治疗管设置,且距离固定,例如食管癌、气管肿瘤参考点设在距源轴10mm处,直肠、阴道癌治疗参考点定在粘膜下,即施源器表面外5mm。
较粗的柱状施源器有利于消弱靶区的梯度变化。
7.近距离放疗临床剂量学步骤:
靶区定位及重建方法,剂量参考点的设置,剂量分布优化。
8.模照射包括模具或敷贴器治疗,即将放射源置于按病种需要制成的模具(一般用牙模塑胶)或敷贴器内进行治疗,多用于表浅病变或容易接近的腔内(如硬腭)。
第三章治疗计划的设计与执行
1.临床剂量学原则:
I.肿瘤剂量要求准确;II.治疗的肿瘤区域内,剂量分布要均匀,剂量变化梯度不能超过±5%,即要达到≥90%的剂量分布;III.设野设计应尽量提高治疗区域内剂量,降低照射区正常组织的受量范围;IV.保护肿瘤周围重要器官免受照射,至少不能使他们接受超过其允许耐受量的范围。
临床剂量学四原则是评价治疗方案优劣的方法。
2.靶区和照射区的区别:
靶区是肿瘤分布的实际情况,治疗计划必须使绝大部分靶区位于90%等剂量曲线之内,照射区为50%等剂量曲线包括的区域。
3.肿瘤区(GTV):
肿瘤临床灶,为一般的诊断手段能够诊断出的可见的具有一定形状和大小的恶性病变的范围包括转移淋巴结及其他转移病变。
4.临床靶区(CTV):
包括肿瘤临床灶,亚临床灶以及肿瘤可能侵犯的范围。
5.内靶区(internaltagetvolumeITV):
由于本身、照射中器官的移动扩大的范围。
系几何定义的范围。
6.计划靶区(PTV):
由于日常摆位,治疗中靶位置和靶体积变化等因素引起了扩大照射的组织范围,以确保临床靶区得到规定的治疗剂量。
7.治疗区:
90%等剂量曲线所包括的范围。
8.照射区:
50%等剂量曲线所包括的范围,越小越好,正常组织剂量的大小。
9.冷剂量区:
内靶区内接受的剂量低于临床靶区规定的处方剂量的允许水平的剂量范围,即在内靶区内剂量低于临床靶区处方剂量的下限-5%的范围。
冷剂量区与热剂量区的定义均是相对于临床靶区而言。
10.剂量热点:
指内靶区外大于规定的靶剂量的剂量区的范围。
一般大于等于2CM2才考虑。
11.靶剂量:
所谓靶剂量就是为使肿瘤得到控制或者治愈的肿瘤致死剂量。
对较均质分布的肿瘤来说,当剂量分布不均匀性较小时,治疗效果或放射效应主要由平均剂量决定,当剂量分布不均匀性较大时,治疗效果由靶区最小剂量决定。
12.危及器官:
是指可能卷入射野内的组织或器官。
它们的放射敏感性(耐受剂量)将显著影响治疗方案的设计或靶区处方剂量的大小。
13.体位固定:
三精是指高精度的肿瘤定位,高精度的治疗计划设计,高精度的治疗。
目前体位固定技术主要有三种:
高分子低温水解塑料热压成形技术,真空袋成形技术,液体混合发泡成形技术。
14.设定计划时确定计划靶区的依据为总的不确定度,包括1.因影像设备的限制,临床靶区范围不能准确确定或周围亚临床病变范围不能准确判断,造成靶区确定的不确定度;2.因器官或组织运动造成靶区相对内外标记点的位置偏差;3.体位固定器的偏差;4.摆位偏差。
计划靶区比临床靶区周边扩大的范围为:
K*总不确定度,K=0.4~0.8,当正常组织对射线比较敏感是,K取小一些,当正常组织对射线较抗拒时,K取大些,有时甚至取1。
一般颅内肿瘤,扩大3.6mm。
15.模拟CT在做定位和模拟时都是在实际患者的治疗部位上进行,而CT模拟只在做CT扫描时才有实际患者,其后的模拟和验证都是通过DRR在计算机中进行虚体的透视和照像,其功能基本与模拟定位机相同。
模拟CT机的前途决定于它的CT图像的质量的提高和扫描时间的缩短,CT模拟机的前途取决于DRR的图像质量。
16.体外照射技术包括:
固定源皮距照射,等中心照射,旋转照射。
X线照射:
单野照射时应使病变放在最大剂量点之后,能量高,病变浅时,应使用组织替代物;共面照射包括交角照射,两野对穿,三野照射,四野照射,旋转照射,其中,从剂量增益的角度看,上述共面射野中对穿野最劣;交角照射的楔形角A与两射野中心轴的交角B的关系为A=90-B/2;非共面照射,射野对穿技术最好不要用于根治性放疗。
17.剂量体积直方图DVH:
当一个计划OAR的DVH曲线总是低于另一个的DVH时,前者计划应该优于后者;当两个计划OAR的DVH曲线有交叉时,如果OAR是串行组织,则高剂量区体积越小的计划越优越,如果OAR是并行组织,则主要与DVH曲线下面的面积有关。
剂量体积直方图应当与相应计划的等剂量曲线分布图结合才能充分发挥作用。
18.托架至皮肤的最佳距离与射野半径之比为4.对钴60来说,全挡铅需LML约6.1cm,对6MVX线来说,全挡铅约需LML8cm。
19.提高放射治疗增益比是肿瘤放射治疗的根本目标。
肿瘤控制概率TCP:
达到95%的肿瘤控制概率所需要的剂量,定义为肿瘤致死剂量TCD95。
正常组织并发症概率NTCP:
是表达正常组织放射并发症的概率随剂量的变化,TD5/5,TD50/5。
20.两野中心轴相互垂直但并不相交的射野称正交野。
第四章调强适形放射治疗
1.调强适形放射治疗定义:
在照射方向上,照射野的形状必须与靶区一致,要使靶区内及表面的剂量处处相等,必须要求每一个射野内诸点的输出剂量率能按照要求的方式进行调整。
2.靶区适合度描述适形放射治疗的剂量分布与靶区形状适合情况,定义为处方剂量面所包括的体积与计划靶区或靶区体积之比,亦称为靶体积比。
3.调强的实现方式:
调节各射野到达P点剂量率的大小;调整各射野照射P点的时间。
4.调强适形放射治疗的实现方式:
分为六大类十种方法:
1.二维物理补偿器;2.多叶准直器,包括静态mlc,动态mlc,旋转调强IMRT;3.断层治疗,包括步进和螺旋;4.电磁扫描;5.棋盘准直器;6.其它,包括独立准直器和移动条。
其中,物理补偿器具有安全、可靠、易于验证的优点,虽然占据较多的模室加工和治疗摆位的时间,但仍是目前用的最为广泛的调强器。
MLC动静态技术的主要优点是,它可适用于任何射线种类和任何射线能量的调强,但是治疗时间较长。
电磁扫描调强技术是目前实现调强治疗的最好方法。
5.质量保证QA与质量控制QC:
措施包括体位的精确固定和内靶区、临床靶区的精确确定。
内靶区是给予靶区规定剂量照射的最大边界。
调强放疗中的另一个极其重要的QA(QC)项目是如何实时监测动态照射野的射野形状和射野中各点的剂量。
近年来发展起来的射野影像系统(EPID),目前主要用于射野形状和位置的验证,用于射野内诸点剂量的监测正在研究发展之中。
目前作调强输出和验证方法有:
1.确认和监测经调强器后的到达患者皮肤前的二维或一维强度分布,这种监测还包括MLC的位置和MLC运动的可靠性;2.在模体内进行进行治疗前的模拟测量和验证,确认后才转到实际患者的治疗;3.用活体剂量测量技术,将测量元件放在射野入射或出射端患者皮肤表面上,或放入患者体内的管腔内,进行照射中的剂量测量;4.可能是,使用射野影响系统提供一组动态的或累积的信号,进行动态监测;5.可能是,设计出一种剂量模拟器,将它搜集到得信号输入计算机,进行患者体内剂量分布的重建。
6.图像引导放疗的实现方式:
1.在线校位,是指在每个分次治疗的过程中,当患者摆位完成后,采集患者2D或3D图像,通过与参考图像比较确定摆位误差,实时校正;2.自适应放疗,根据治疗过程中的反馈信息,对治疗方案做相应调整的治疗技术;3屏气和呼吸门控技术;4.四维放射治疗,采用4D影响所用的相同的呼吸监测装置监测患者呼吸,当呼吸进行到某个呼吸时相时,治疗机即调用该时相的射野参数实施照射;5.实时跟踪治疗,即实时调整射线束或调整患者身体,以保证射线束与运动靶区相对不变空间位置。
7.调强适形放疗,周围正常组织的剂量可降低,肿瘤的照射剂量不变。
第五章X射线立体定向放射治疗
1.伽马刀源到焦点的距离为39.5cm焦点处射野大小为4、8、14、18mm,而X射线SRT等中心处的射野大小可达到40~50mm。
2.直线加速器射野的半影(80%~20%)约6~8mm,当添加科瑞特XST-SYS系统准直器后,变成三级准直器,可将半影降到3mm以下,三级准直器下端离等中心越近越好,对头部X射线SRT系统,此距离一般取25~30cm,对于胸腹部SRT系统,此距离一般取30~35cm之间。
3.X射线立体定向放疗的剂量分布特点:
1.小野集束照射,剂量分布集中;2.小野集束照射,靶区周边剂量梯度变化较大;3.靶区内及靶区附近的剂量分布不均匀;4.靶周边的正常组织剂量很小。
X射线立体定向治疗靶点位置精度,总的精确度是定位精确度和摆位精确度的累积效果,其中,人头模治疗误差主要来自定位阶段。
伽马刀机械焦点精度(±0.3mm)高于加速器机械等中心精度(±1mm),但是由于CT定位的不确定度占重要地位,所以治疗时两者精度相近。
4.X射线立体定向放疗的质量保证包括:
CT(MRI)线性;立体定向定位框架;三维坐标重建的精度;立体定向摆位框架;直线加速器的等中心精度或伽马刀装置的焦点精度;激光定位灯;数学计算模型;小野剂量分布的测量。
常规治疗用的加速器用于X线立体定向放疗与伽马刀立体定向治疗的重要区别在于,加速器需要每周检查激光定位灯与加速器等中心的符合度。
5.X射线立体定向治疗的基本特征是旋转集束,即圆形小野。
第六章放射治疗的质量保证和质量控制
1.ICRU第24号报告总结了以往的分析和研究后指出:
已有的证据证明,对一些类型的肿瘤,原发灶的根治剂量的精确性应好于±5%。
2.剂量响应梯度的定义:
肿瘤的局部控制率从50%增加到75%时,所需要的剂量增加的百分数;正常组织放射反应几率由25%增至50%时所需要剂量增加的百分数。
剂量响应梯度越大的肿瘤,对剂量精确性要求较低,剂量响应梯度小的肿瘤对剂量精确性要求高;正常组织的耐受量的可允许变化范围比较小,即对剂量精确性要求高。
第三篇临床放射生物学
第一章概述
1.临床放射生物学在放射治疗中的作用:
1.为放射治疗提供理论基础;2.治疗策略的实证研究;3.个体化放射治疗方案的研究和设计。
第二章电离辐射对生物体的作用
1.电离辐射的时间标尺:
物理阶段,电离辐射与非电离辐射的主要区别在于单个能量包的大小,而不是射线所含的总能量;化学阶段,该阶段的重要特点是清除反应之间的竞争;生物阶段,放射线早期反应时由于干细胞的杀灭,引起的干细胞的丢失所致。
2.X射线对哺乳动物细胞DNA的损伤,约三分之二是有氢氧自由基所致。
辐射损伤可以通过防护剂或增敏剂等化学途径来修饰,而直接作用是不能被修饰的。
3.相对生物效应:
以250KVX射线为参照,产生相等生物效应所需的X射线剂量与被测试射线的剂量之比。
4.LET与RBE得关系:
在LET为100kev/um(中子能量均值)时,RBE最大,LET继续增高,RBE反而下降,这与高LET射线存在超杀效应有关。
5.常规射线(低LET射线)时,氧增强比约2.5~3;治疗比=正常组织的耐受量/肿瘤组织致死量。
治疗增益因子(TGF)=肿瘤组织的RBE/正常组织的RBE。
第三章电离辐射的细胞效应
1.辐射诱导的DNA损伤的几种主要形式:
单链,双链断裂。
其中双链断裂被认为是电离辐射在染色体上所致的最关键损伤,双链断裂大约是单链断裂的0.04倍,与照射剂量呈线性关系,表明是由电离辐射的单击所致。
2.增殖性细胞死亡:
细胞死亡可发生在照射后的第一次或以后的几次分裂。
是辐射所致细胞死亡的主要形式。
细胞死亡时放射线对细胞的遗传物质和DNA造成不可修复的损伤所致。
3.凋亡作为辐射所引起的细胞死亡形式,是高度细胞类型依赖性的。
细胞死亡与肿瘤细胞在繁殖完整性的丢失在概念上存在根本意义的不同,