擦拭布IESTRPCC0043中文版讲解Word格式.docx

上传人:b****6 文档编号:19761960 上传时间:2023-01-09 格式:DOCX 页数:28 大小:100.37KB
下载 相关 举报
擦拭布IESTRPCC0043中文版讲解Word格式.docx_第1页
第1页 / 共28页
擦拭布IESTRPCC0043中文版讲解Word格式.docx_第2页
第2页 / 共28页
擦拭布IESTRPCC0043中文版讲解Word格式.docx_第3页
第3页 / 共28页
擦拭布IESTRPCC0043中文版讲解Word格式.docx_第4页
第4页 / 共28页
擦拭布IESTRPCC0043中文版讲解Word格式.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

擦拭布IESTRPCC0043中文版讲解Word格式.docx

《擦拭布IESTRPCC0043中文版讲解Word格式.docx》由会员分享,可在线阅读,更多相关《擦拭布IESTRPCC0043中文版讲解Word格式.docx(28页珍藏版)》请在冰豆网上搜索。

擦拭布IESTRPCC0043中文版讲解Word格式.docx

 

评估洁净室和其他受控环境擦拭材料评价

1范围和限制

1.1范围

本规程描述了洁净室和其他受控环境擦拭材料的清洁特性检测方法。

1.2限制

本规程未建议擦拭布组成、包装或者洗涤,或者像强度、抗磨蚀力等物理性质。

2参考文献

以下文件被合并到本规程指定内容,读者需使用参考文献的最新版本。

2.1ANSI(美国国家标准学会)

ANSI/AAM/ISO11737-1:

医疗设备的灭菌-微生物方法-第一部分:

产品微生物菌落评价

2.2美国材料与试验协会(ASTM)

ASTMD1193-99el:

净水剂标准规范

ASTME548-94:

实验室评估一般性标准规范

ASTME2090-00:

洁净室擦拭布释放的不同尺寸颗粒和纤维的光学和电子扫描显微镜技术标准试验方法。

ASTMF25-68(1999):

电子和相似行业的洁净室和其它尘埃受控区域空气悬浮颗粒的计径计数标准试验方法。

ASTMF311-97(2002):

处理航空液体的样品微粒膜过滤标准分析方法

ASTMF312-97(2003):

航空流体膜过滤颗粒的显微镜计径计数标准试验方法

2.3ESD

ESDSTM11.11:

静电耗散平面材料的表面电阻检测

2.4环境科学和技术研究所(IEST)

IEST-RP-CC013-86T:

设备校正或验证程序

IEST-RP-CC022.1:

洁净室及其它受控环境的静电荷

2.5国际标准化组织(ISO)

ISO14644-1:

洁净室及相关受控环境-第一部分:

空气洁净度分类

2.6SEMI

SEMIC10-0998:

检测限确定方法指南

2.7其它资料

1.AutomotiveIndustryActionGroup.2002.MeasurementSystemsAnalysis.3rdEd2.Detroit,MI:

AIAG.

2.Wheeler,D.W.andR.W.Lyday.1998.EvaluatingtheMeasurementProcess.2ndEd.Knoxville,TN:

SPCPressInc.

3.Rudisill,J.F.andE.E.Burch.1999.QualityManagement&

MeasurementSystems.Clemson,SC;

QualityAssociatesofClemson.

2.8来源和地址

3术语及定义

生成颗粒

不存在擦拭布表面,因为机械作用产生的颗粒。

颗粒

一般来说,尺寸大小在0.001μm~1000μm的固体或液体物质。

释放颗粒

存在擦拭布表面,或经液体润湿但无机械力而作用释放的颗粒。

吸附

固体表面带动流体的物理或化学作用力(区别于发生在毛孔和毛细血管内外的吸附)

4背景及目的

擦拭材料的试验可分为两大类,一类与功能有关,另一类与污染相关。

吸附液体可能是擦拭布最重要的功能特征。

与吸附能力有关的两个独立特性:

吸附量(吸附液体的量)和吸附率(吸附的速率)。

第8章描述了这两种不同特性的测定方法。

污染(或清洁)试验不甚枚举。

然而,高科技行业公认的颗粒、非特定萃取物、个别离子是最重要的污染物。

第5章描述了擦拭布试验应遵从的实验室规程建议。

这些规程的设计是为了提高标准试验过程所有实验室检测的质量和有效性。

第6章描述了擦拭布释放颗粒的计数方法。

擦拭布浸入液体,液体将擦拭布表面妥善打湿,此时擦拭布释放的颗粒最多。

因此,擦拭布湿的状态下,计数其颗粒数是最有效的。

本章还讲述了两种样品准备方法及两种计数方法。

第7章描述了擦拭布中提取的不明物质定量分析方法。

7.1描述了提取和常见提取物定量的两种方法,一种是短期试验,另一种是充分提取。

7.2提供了特殊物质定量分析指导。

7.1包括了非物化萃取物,7.2.1和7.2.2分别描述了有机化合物和无机物的提取及定量分析方法。

第8章描述了吸附量和吸附率试验方法。

第9章描述了擦拭产品的取样及测定生物负荷的方法。

操作时需用到灭菌设备及无菌技术。

本规程未将擦拭布按特定用途分类。

然而,本规程提供了擦拭材料常见重要特性合理实用的检测方法。

综合与用途有关的重要性能及试验结果,可对擦拭材料优点定量评定。

5实验室规程建议

一般而言,实验室规程建议为了提高标准试验过程所有实验室检测的质量和有效性。

提示:

本规程不旨在解决所有与安全有关问题,如果有的话,与其使用相关。

使用本规程前,使用者应颁布合理的健康安全实践,并制定使用规章限定。

实验室规程建议包括:

a)系统空白

可能的话,为保证与检测有关的所有器材、设备、试剂和材料的洁净,试验时需操作系统空白。

系统空白是指检测不含样品的被分析物(如颗粒,离子,NVR等特性)。

一般规定,系统空白值应不超过样品测定值的15%。

b)取样及分析

为保证检测合理的精确度,用于分析的样品量应充足。

可能的话,样品尺寸要足够大,至少是分析检测限的两倍。

(见5f)。

如果在检测限以下,则检测报告写“检测限以下”(“0”表明没有,因此检测报告应填写“检测限以下”而非“0”).如果还有可能的话,尺寸要足够大,保证样品检测结果尽可能高于空白的7倍。

(5a)

c)环境

样品及空白系统的所有颗粒、离子准备试验需在无被测物污染的环境操作。

包括ISO5级在0.5μm的清洁罩下或者更洁净的环境。

除非不可操作,否则吸附力,电阻和生物负荷的试验应在类似洁净的环境下操作。

d)样品处理

如果可以的话,为避免外来污染,所有样品处理要用洁净的洁净室手套,镊子和钳子,在5c描述的环境操作。

e)校正和有效性(见ASTME548和IEST-RP-CC-013-86T)

实验室应制定合理的设备校正时间间隔。

仪器或系统的校正需参照有关标准。

任设备运行核实至少一年一次,任何重大运行后也需核实。

实验室需对分析仪器系统或单个设备的操作设定限制。

f)检测限

可能的话,利用校正数据的回归分析,设定试验检测限。

详细方法见SEMIC10-0998。

用可获得每种被测物校正数据的分析设备测定离子浓度。

据此,可获得每种离子的检测限。

g)可溶性物质的回归性研究

为了确认某种建议试验方法的可信度,用已知量的合适被测物做一次或多次样品试验是较合适方法。

被测物的回归性越高,表明建议试验方法的可信度越高。

h)数值分析

可能的话,需操作多次试验,计算均值和偏差。

过程测定指标(PMI),又名R&

R百分比计算,被推荐为擦拭布试验验证的一部分。

产品特性试验的一个重要作用在于分辨与性能问题有关的产品类别;

即,区别两种类别的一部分或很多部分差异的能力。

参考文献1和3以更易理解的方式讲述了这部分内容。

参考文献2有详尽描述。

这些参考资料表明与检测过程有关的统计误差与检测过程有关。

R&

R百分比计算是最常用的计量值量规(区别于属性计)。

属性计介绍见参考1,P81。

R百分比计算定义为:

PGR&

R=100×

σm/σt

(1)

式中:

σm是与测量属性有关的标准偏差

σt是包括产品自身变化和测量过程变化有关的总标准方差

每种产品流都有与测定特性有关的PGR&

R。

正因如此,一些使用者用PMI描述PGR&

当PGR&

R很小,试验方法适用于质量控制过程或已评定的产品流。

如果一种试验方法的所有使用者都很难获得可接受的PGR&

R值,这也许表明试验方法不实用。

因此,PMI被建议为清洁室和其它受控环境擦拭材料试验认证程序和连续验证、试验合理有效的一部分。

R观测值评价指导:

R<

10:

10<

30:

一般正确

R>

测试系统需改进

有关PGR&

R统计值应用于试验验证的详细资料见1-3。

i)报告

一份简要分析应包括以下信息:

分析日期

报告日期

分析人

报告填写人

批号或其它样品鉴定信息

检测类型

设备参数

样品准备参数

系统空白值

测试值

检测限

数值分析

6颗粒检测方法

不像擦拭材料其它污染物的检测,一块擦拭布可产生的颗粒数没有确定答案。

擦拭布表面颗粒是有限的。

然而,擦拭布也可能是另一种颗粒的来源,不存在擦拭布表面,由机械力作用产生的颗粒。

存在擦拭布表面的定义颗粒为释放颗粒。

机械作用产生的颗粒定义为产生颗粒。

颗粒和擦拭材料的这种模式相当于假定擦拭布存在特征应力-应变曲线。

如果将擦拭布单位区域内的总颗粒数与单位区域内作用力一一对应制图,那么随着机械力的实施,任何擦拭布产生的颗粒数都将上升。

曲线类型表明擦拭布释放和产生颗粒趋势。

最初,当擦拭布浸润在合适的试验液体中,大部分准备释放的颗粒离开擦拭布。

由于力的使用,紧紧吸附在擦拭布表面的颗粒会移动,随着能量的增加,擦拭布会产生颗粒并且移动到试验溶液。

本操作规程可实现曲线上两点的确定。

第一点,利用轨道震荡试验获得(见6.1.4),表示轻微作用下,擦拭布释放的释放和产生颗粒。

曲线上第二点,利用双轴震荡试验获得,表示在强作用力下,擦拭布产生的释放和再生颗粒。

由于擦拭布释放颗粒数的答案不是唯一的,本操作规程提供了两种样品准备技术,可尽可能模拟擦拭布使用中遇到的典型压力。

颗粒检测的表述是基于资料ASTM标准D1193,F25,F311,F312,和E2090,和ISO14644-1。

6.1和6.2详细表述了移动及计数擦拭布颗粒的方法。

6.1样品准备技术

每种样品准备技术都需将擦拭布浸入试验液体,并对装有擦拭布及试验液体的器皿施用不同的力度。

操作过程中擦拭布会释放颗粒并悬浮在试验液体中,此时可计算颗粒数。

如介绍中讨论的,搅拌力度从温和至激烈,沿着假定的应变-应力曲线会有不同量的颗粒释放。

6.1.1试验溶剂

为了获得与擦拭布使用有关的结果,擦拭布必须在将用到它的溶液中试验。

溶剂表面张力的不同导致释放的颗粒数不同。

去离子水作为试验溶剂时,擦拭布释放的颗粒少于表面张力更低的清洁溶液。

本规程允许使用者选择与擦拭布特定应用最相关的试验溶剂。

使用者须考虑溶液选择引发的潜在安全问题。

报告上应注明测试溶剂。

酒精/去离子水或表面活性剂/去离子水混合物是典型的清洁溶液,这些溶液使用在包括擦拭在内的很多应用中。

就算是表面张力很低的溶液,都可使被擦拭物和擦拭布表面释放颗粒。

异丙醇混合的使用贯穿整个半导体工业,也广泛用于其它行业。

异丙醇气体极度易燃,使用者在准备及使用异丙醇时应加以小心(着火点12℃[54OF])。

在整个行业,低浓度表面活性剂/水的混合物也被广泛用作清洁溶液。

这些混合物既可去除极性污染物也可去除非极性污染物,且不会带来安全隐患。

以下是常用于清洁室擦拭布,和被建议用于样品准备技术中的试验溶液具体实例:

9%异丙醇和去离子水中的混合物

0.005%非离子活性剂和去离子水中的混合物

100%去离子水

尽管试验溶液的这些分类包括了涉及擦拭在内的很多清洁应用,但这份清单不是唯一的。

其他的与清洁有关的溶剂和溶液,可用于本规程中描述的样品准备技术。

考虑到这种方面时,需考虑基于设备和使用溶剂的安全性。

6.1.2系统空白

为保证外来污染不会影响实验结果,每次试验需测定本底计数或系统空白。

系统空白指使用试验过程用到的所有试验器材(除去将被测试的擦拭布)运行整个过程。

试验中产生的颗粒数是由擦拭布实际结果减去系统空白得到的。

系统空白应小于总结果的10%。

如果系统空白超过10%,需排除外来污染源并重新测定。

6.1.3双轴震荡试验

a)设备

1)去离子水,按ASTMD1193,TypeⅢ方法制备,4.0MΩ-cm滤膜,孔径在0.45μm或更小。

2)试验溶液(见6.1.1)

3)双轴震荡器,可提供转速500rpm,10mm到13mm的水平和垂直位移

4)ISO5级在0.5μm或者更洁净的层流工作台

5)洁净的4L广口瓶,无微粒释放的瓶盖

6)已洁净的洁净实验室常用工具,如洁净手套,钳子和搅拌棒

b)过程

试验需在ISO5级在0.5μm或者更洁净的环境操作,步骤如下:

1)加600mL指定的试验溶液至广口瓶内(6.1.1),盖上瓶盖,固定在双轴振荡器内,振荡5min。

取下广口瓶,打开瓶盖,使用液体颗粒计数器或过滤和显微镜技术计数试验溶液颗粒数,作为系统空白。

计数后丢弃溶液。

2)选择被检测擦拭布。

尽管擦拭布尺寸无特定限制,但最标准的擦拭布尺寸接近230mm×

230mm(9英尺×

9英尺)或小一些。

3)加600mL试验溶液至广口瓶内,放入擦拭布,将其完全浸泡。

盖上瓶盖,固定在双轴震荡器内激烈振荡5min。

4)取出广口瓶。

打开瓶盖,用洁净的镊子夹出擦拭布,让多余的液体滴回广口瓶30-60秒。

不要试图挤压擦拭布。

5)测量湿布尺寸,精确至毫米,然后将布放置一边。

6)利用液体颗粒计数器或过滤(6.2.1)和显微镜技术计算溶液中颗粒数(6.2.2)。

一些颗粒计数器样品管长度可能不够长,装不下广口瓶内所有样品。

这种情况下,应该将试验液体转移到另一器皿。

该器皿必须是洁净的,需同时用于系统空白和擦拭布试验溶液。

6.1.4轨道震荡试验

1)洁净的聚乙烯托盘,约为25cm×

34cm×

5cm(10in.×

34in.×

5in.)

2)洁净的聚乙烯托盘,约为32cm×

46cm×

6cm(13in.×

18in.×

2in.)

(须大于擦拭布的尺寸)

3)去离子水,按ASTMD1193,TypeⅢ方法制备,4.0MΩ-cm滤膜,孔径0.45μm或更小。

4)试验溶液(6.1.1)

5)轨道震荡器,可提供150rpm,20mm水平位移

6)ISO5级在0.5μm的或者更洁净的层流工作台

7)普通洁净实验室常用工具,如洁净室手套,钳子和搅拌棒

b)过程

检测需在ISO5级在0.5μm或者更洁净的工作环境操作,步骤如下:

1)选择被检测的擦拭布。

尽管擦拭布尺寸无特定限制,但最标准擦拭布尺寸接近230mm×

9英尺)或者小一些。

试验按以下步骤操作。

2)加600mL指定试验溶液至聚乙烯托盘(6.1.1)。

将托盘放入轨道震荡器150rpm,转动5min。

利用液体颗粒计数器或过滤(6.2.1)和显微镜技术计算溶液颗粒数(6.2.2)。

计数后丢弃试验溶液。

3)加600mL指定试验溶液至聚乙烯托盘,将擦拭布缓缓放入液体表面使其漂浮在托盘上。

如需要,用一洁净玻璃棒轻轻杵动擦拭布,确保擦拭布被试验溶液完全润湿,150rpm振荡5min。

4)取出托盘。

用洁净镊子夹住相邻两角,慢慢夹出擦拭布,让多余的液体回滴至托盘30-60s。

6)利用液体颗粒计数器或过滤(6.2.1)和显微镜技术计算溶液颗粒数(6.2.2)。

若擦拭布尺寸大于230mm×

9英尺)(如305mm×

305mm[12英尺×

12英尺]),试验应在如6.1.4a2描述的更大的聚乙烯托盘内操作。

SEM

0.5μm

5μm

20μm

LPC

100μm

图1-颗粒尺寸和枚举技术

OM

6.2枚举技术

自动液体计数器或过滤后显微镜技术均可用于擦拭布释放颗粒计数。

两种方法都需按尺寸大小将颗粒分级。

图1列举了计数和颗粒尺寸分级的几种选择。

光学显微镜和电子扫描显微镜的结合使用,可将颗粒分成粒径<

5μm,5-100μm,粒径>

100μm三个等级。

该方法的检测限由过滤器孔径决定。

LPC检测,基于设备型号,模型和传感器,通常将颗粒分为粒径<

20μm和20-100μm(见提示)。

大多数LPC能捕获传感器高低检测限之间的大量阈值间。

LPC的传感器决定了检测限。

所有粒径大于100μm的颗粒和纤维需用显微镜计数。

不同型号LPC提供了粒径检测范围广泛的传感器。

通常,粒径<

20μm和>

20μm的颗粒计数,至少需两种传感器。

传感器检测尺寸范围和上下限会随厂商和型号发生改变,图1显示了两种常用传感器的检测范围。

6.2.1液体颗粒计数器(粒径<

100μm)

a)设备

1)检测域为0.5-20μm的液体颗粒计数器

2)检测域为20-100μm的附加传感器

LPC适合粒径<100μm的液体颗粒的顺序计数。

LPC可直接由样品制备液得到结果,无需过滤。

LPC使用不同传感器计数不同尺寸范围颗粒。

100μm的颗粒计数,至少需两种不同传感器。

每个传感器均需操作以下过程。

每种粒径范围,系统空白和样品都需检测。

所有的试验需在ISO5级在0.5μm的或更洁净的工作台环境操作。

1)使用LPC液体进样系统,连续取三份等量样品,计算每份样品的颗粒数。

记录结果,轻轻摇动每份样品。

2)平行样品数值应不超过15%。

如果超出,用去离子水冲洗计数器并重复步骤1直到差值变小。

3)基于空白和样品的颗粒浓度,平行样品数量,水的体积,擦拭布面积,计算每平方米擦拭布释放的颗粒数。

计算举例:

第一份空白,c1;

82颗粒/mL。

第二份空白,c2;

72颗粒/mL。

第三份空白,c3;

76颗粒/mL。

水体积:

600mL。

第一份样品,C1;

4300颗粒/mL。

第二份样品,C2;

4800颗粒/mL。

第三份样品,C3;

4500颗粒/mL。

擦拭布体积Aw:

240mm×

230mm

颗粒/m2擦拭布=[(C1+C2+C3)/3-(c1+c2+c3)/3]×

V/Aw=48×

106

(2)

4)用正确的方式记录结果,单位面积内20-100μm,和<

20μm的颗粒数均需记录。

粒径<

20μm的检测限由检测需要和设备性能决定。

检测至少重复三次,计算并记录样品的平均值及标准方差。

6.2.2显微镜检查

显微镜技术是一种可直接观察所有尺寸颗粒和纤维的技术。

该技术在样品准备时,需将溶解颗粒过滤至多孔过滤器薄膜。

完成过滤后,立即使用光学和电子扫描显微镜观察滤膜,计算滤膜上颗粒和纤维的尺寸和数量。

所有过滤需在ISO5级在0.5μm的或更洁净的工作台环境操作。

检测完的滤膜需保存在洁净、密封的容器。

6.2.2.1过滤

a)样品准备结束后,立即将悬浮液过滤至将用于显微镜观察的多孔滤膜(见提示)。

连接过滤烧瓶与抽真空泵,将带不锈钢筛的连接到插入烧瓶中。

不要开启真空泵。

b)用鸭嘴状小镊子,夹一块新的滤膜至培养皿,过滤面朝上。

c)用去离子水轻轻冲洗滤膜,除去表面碎片。

用镊子将滤膜夹至过滤器的不锈钢筛,保持过滤面朝上。

d)将PTFE垫圈放置中心,不锈钢漏斗置于过滤器顶端,拧紧装备。

e)将样品制备液缓慢倒入过滤漏斗中。

一旦漏斗装满,打开真空泵,使过滤速率约为25mL/min。

过滤时需不断往漏斗内加入液体,保证液体量约为漏斗的2/3。

f)加完样品后,加25mL去离子水至样品瓶,冲洗杯内残留颗粒。

将冲洗液倒入过滤漏斗内。

过滤结束之前,漏斗内应一直有液体,过滤完成后关闭真空泵。

g)如果仅用光学显微镜,取下漏斗和垫圈,将滤膜缓慢移至洁净的滤膜盒内,盖上盖子。

如果用电子显微镜检测,移开漏斗和垫圈,用鸭嘴状镊子将滤膜缓慢移至洁净的样品托上。

h)在ISO5级在0.5μm的或更洁净的环境将滤膜风干。

i)电子显微镜检测时,在与样品托接触的滤膜边缘涂几点导电碳涂料,将滤膜粘在样品托上。

电子显微镜(SEM)观测之前,必须用金或碳盖住滤膜及样品托表面。

(操作时要细心,保证滤膜放置平整,没有褶皱,以免影响聚焦和计数。

j)系统空白运行结束,样品运行之前不需要重新清洗过滤设备,但样品运行时要用新的滤膜。

如样品无需用SEM检测粒径<

100μm的颗粒,滤膜可用带栅滤片(6.2.2a6)替代。

电子显微镜使用不带栅格的聚碳酸酯滤膜;

光学显微镜使用带栅格的滤膜。

6.2.2.2光学显微镜技术(颗粒和纤维>

100微米)

1)双目立体视觉光学显微镜,性能参数:

至少可放大40倍,双镜壁,可调角度,强度可调灯源,伸缩台和载物台。

(粒径<

100μm的分析,见6.2.2.3)

2)带不锈钢漏斗的,不锈钢片支撑的微粒分析膜过滤装置,PTFE垫片和弹簧夹。

3)真空泵,可提供50托或更低负压

4)2-L真空瓶

5)聚碳酸酯滤膜,0.45μm或更小孔径,白色,直径25mm

6)网格醋酸或硝酸纤维滤膜,直径25mm或47mm(如果电子显微镜没有和光学显微镜结合使用,可随意选择,见6.2.2.1提示)

7)鸭嘴状小镊子

8)47-mm试管

9)手持检尺计数器

10)镜台测微尺,最小刻度为0.1mm或0.01mm

光学显微镜技术更适用于粒径>100μm颗粒或纤维倒的计数。

过滤和滤膜准备方法见6.3.1.1。

系统空白和样品都需计数。

确保无明显污染最有效方式是优先检测系统空白。

1)过滤器滤膜组件放在显微镜载物台中心。

从过滤器两侧照明,使光源入射角接近15或30度。

2)显微镜放大倍数聚焦在20倍,使滤膜上大颗粒和纤维清晰可见。

如果需要,调整灯源角度和强度,使观察达最大化清晰。

3)通过X和Y轴方向移动,完整扫描滤膜。

确认颗粒和纤维分布的均一性。

如果分布不均一,弃用并准备新样品。

4)为计数大颗粒和纤维,将滤膜放在视野内左下角。

计算视野内所有粒径>100μm的颗粒和纤维数,记录结果(见提示)。

用镜台测微尺或校正的物镜进行尺寸测量。

5)计完第一个视野后,移动载物台至X方向相邻的视野,计数粒径>100μm的颗粒和纤维数量。

6)X方向继续移动载物台,直到计完最右端视野。

渐渐抬高载物台,继续对视野进行计数,这次,x-轴方向从右至左地移动。

7)继续这种计数方式,直到计完滤膜所有视野。

8)系统空白和样品中粒径>100μm的颗粒和纤维

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1