国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx
《国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx》由会员分享,可在线阅读,更多相关《国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx(19页珍藏版)》请在冰豆网上搜索。
XingyongZhang
Summary
InTask1,weestablishaVolterrapredator-preymodelwiththreebiologicalpopulations,andwespecifythesteady-statenumbersofthethreepopulations.Then,basedontheAnalyticHierarchyProcessandacompetitionmodel,weobtaintheratioofdifferentspeciesinthesecondpopulation,predictthatthesteady-statelevelofwaterqualityisnothigh,andmakethewaterqualitysatisfactorybyadjustingthenumbersofsixspecies.
InTask2,whenmilkfishfarmingsuppressesotheranimalspecies,wesetupalogisticmodel,andpredictthatthewaterqualityatsteady-stateisawful,thesameasinthefishpens—insufficientforthecontinuedhealthygrowthofcoralspecies.Whenotherspeciesarenottotallysuppressed,withanimprovedpredator-preymodelwesimulatethewaterqualityofBolinao(makingitmatchcurrentquality),obtainpredictednumbersofpopulations,anddiscusschangestothepredator-preymodelaimedatmakingthenumbersofthepopulationsagreemorecloselywithobservations.
InTask3,weestablishapolyculturemodelthatreflectsaninterdependentsetofspecies,introducemusselsandseaweedgrowingonthesidesofthepens,andobtainthenumbersofpopulationsinsteadystateandtheoutputsofourmodel.
InTasks4and5,wedifferentiatethemonetaryvaluesofdifferentkindsediblebiomassanddefinethetotalvalueasthesumofthevaluesofeachspeciesharvested,minusthecostofmilkfishfeed.Undercircumstances
TheUMAPJournal30
(2)(2009)121–139.!
cCopyright2009byCOMAP,Inc.Allrightsreserved.Permissiontomakedigitalorhardcopiesofpartorallofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnotice.Abstractingwithcreditispermitted,butcopyrightsforcomponentsofthisworkownedbyothersthanCOMAPmustbehonored.Tocopyotherwise,torepublish,topostonservers,ortoredistributetolistsrequirespriorpermissionfromCOMAP.
ofacceptablewaterquality,webuildanonlinearequilibriumoptimizationmodel,fromwhichweobtainanoptimalstrategyandharvest.
InTask6,weputforwardastrategytoimprovethewaterqualityinBolinao.Withtheratiobetweenfeedcostandnetincomeastheindex,theindexvalueofthemodelissmallerthanthatofBolinaoarea,whichsignifiestheleverageofthestrategy.Also,weanalyzethepolyculturesystemintermsofecology.
Introduction
ToimprovethesituationinBolinao,weneedtoestablishapracticablepolyculturesystemandintroduceitgradually.Soourgoalisprettyclear:
•duction.ModeltheoriginalBolinaocoralreefecosystembeforefishfarmintro-
•ModelthecurrentBolinaomilkfishmonoculture.
•ModeltheremediationofBolinaoviapolyculture.
•Discusstheoutputsandeconomicvaluesofspecies.
•WritemarizingabriefthetorelationshipthedirectorbetweenofthePacificbiodiversityMarineFisheriesandwaterCouncilqualitysum-forcoralgrowth.
Ourapproachis:
•theDeeplycoralanalyzereeffoodweb.dataintheproblem,graduallyestablishingamodelof
•Withavailabledataasevaluationcriteria,confirmthewaterqualitybasedonelementsinthesediment.
•Establishpurposeofmodels,improvingandwaterinterpretquality.theactualsituationwithdata,withthe
•Dofurtherdiscussionbasedonourwork.
Solutions
Task1
Aimingtowardacoralreeffoodwebmodel,weassumethatallthespeciesgrowinthesamefishpen.Wedividethespeciesintothreepopulations:
•onealgaspecies(Population1);
•oneherbivorousfish,onemolluscspecies,onecrustaceanspecies,andoneechinodermspecies(Population2);
and
•thesolepredatorspecies,milkfish(Population3).
TheinterrelationshipsamongthespeciesarepresentedinFigure1.
Onthisbasis,wecanestablishaVolterrapredator-preymodelwiththreepopulations[ShanandTang2007].Letthenumberoftheithpopulationbexi(t).Ifwedonottakeintoconsiderationtherestrictionsofnaturalresources,thealgaespeciesofPopulation1growinginisolationwillfollowanexponentialgrowthlawwithrelativegrowthrater1,sothatx˙(t)=r1x1.However,speciesofPopulation2feedingonthealgaspecieswilldecreasethegrowthrateofthealgae,sotherevisedmodelofthealgaspeciesis
x˙1(t)=x1(r1−λ1x2),
wheretheproportionalitycoefficientλ1reflectsthefeedingcapabilityofspeciesinPopulation2forthealgaspecies.
AssumethatthedeathrateofthespeciesinPopulationIIisr2whenexistinginisolation;
thenx˙2(t)=−r2x2,sobasedonthefoodwebweconcludethat
x˙2(t)=x2(−r2+λ2x1),
wheretheproportionalitycoefficientλ2reflectsthesupportcapabilityofthealgaspeciesforPopulation2—whichinturnprovidefoodforthemilkfish.ThemilkfishreducethegrowthrateofthespeciesinPopulation2,sowemustsubtracttheirfeedingeffecttoget
x˙2(t)=x2(−r2+λ2x1−µ
x3).
Likewise,themodelforthemilkfishis
x˙3(t)=x3(−r3+λ3x2).
Altogether,wehaveaninterdependentandmutually-restrictingmathematicalmodelofthethreepopulations:
Sincethissystemofdifferentialequationshasnoanalyticsolution,weneedtouseMatlabtogetitsnumericalsolution.
Ecologistspointoutthataperiodicsolutioncannotbeobservedinmostbalancedecosystems;
inabalancedecosystem,thereisanequilibrium.Inaddition,someecologiststhinkthatthelong-existingandperiodicallychangingbalancedecosystemsinnaturetendtowardastableequilibrium;
thatis,ifthesystemdivergesfromtheformerperiodiccyclebecauseofdisturbance,aninternalcontrolmechanismwillrestoreit.However,theperiodically-changingstatedescribedbytheVolterramodelisnon-structuredstability,andevensubtleadjustmentstotheparameterswillchangetheperiodicsolution.
Soweimprovethemodelbylettingthealgaspeciesfollowlogisticgrowthifinisolation:
whereN1isthemaximumpopulationofthealgaspeciesallowedbytheenvironmentalresources.ThealgaspeciesprovidesfoodforthespeciesofPopulation2,sothemodelforthealgaespeciesis
whereN2isthemaximumcapacityofthespeciesinPopulation2andσ1referstothequantityofthealgae(comparedtoN1)eatenbytheunitquantityspeciesinPopulation2(comparedtoN2).
Withoutthealgae,thespeciesinPopulation2willperish;
letitsdeathrateber2,sothatinisolationwewillhave:
x˙2(t)=−r2x2.
ThealgaeprovidefoodforPopulation2,soweshouldaddthateffect;
andthegrowthofthespeciesinPopulation2isalsoinfluencedbyinternalblockingaction;
soweget
whereσ2isanalogoustoσ1.Analogously,wecangetafullmodelofthespeciesinPopulation2via
.
WithoutthespeciesinPopulation2,milkfishwilldisappear;
wesettheirdeathrateasr3.ThespeciesinPopulation2providefoodforthemilkfish,andthegrowthofmilkfishisalsorestrictedbyinternalblockingaction.Herethemodelis
Summarizing,wehavesimultaneousequationsconstitutinganinterdependentmathematicalmodelforthethreepopulations:
Weobtainthevaluesofsomeparametersinthemodel,andthroughnonlineardatafittingoftheoriginaldataofthelocalthreepopulations[ShanandTang2007;
Sumagaysay-Chavoso1998;
ChenandChou2001],wegettheirnaturalgrowthrates:
σ1=0.6,σ2=0.5,σ3=0.5,σ4=2;
N1=150×
103,N2=30×
103,N3=2.2×
103.
Accordingtothevolumeoflocalfishpensandrelevantmaterials,wegettheoriginalnumbersofthethreepopulations:
x1(0)=121.5×
103,x2(0)=27×
103,x3(0)=2×
ThenweuseMatlabtoimplementthemodel,withtheresultsofFigure2,whereweseethatcanseethatwiththepassageoftime,thexi(t)tendtothesteady-statevalues69,027,27,015,and1,760.
Thenumber27,015ofthespeciesinPopulation2ismadeupofherbivorousfish,molluscs,crustaceans,andechinoderms.NowweconfirmthenumbersofallthespeciesinPopulation2,whichstayatthesametrophiclevel,coexistingandmutuallycompeting.
Figure2.Numericalsolutionsforxi(t).
WeapplyexpertsystemandgroupdecisiontheorytodeterminetheweightsofthespeciesinPopulation2.Wehaveamulti-attributedecisionproblem,wheretheaimistoselecttheoptimalsolutionfrommanyalternativesortosorttheavailablealternatives.
AssumethatthefinitesolutionsetisY={y1,...,yn},theattributesetisC={c1,...,cq},andthedecisionexpertsetisE={e1,...,em}.LetS={s1,...,sg}beapredefinedsetconsistingofodd-chainelements.ExpertekselectsoneelementfromSasthevalueofsolutionyiunderattributecj;
letitbedenotedas
andlet
denotethejudgmentmatrixofexpertekonallthesolutionsforalltheattributes.Theattributeweightvectorinevaluatinginformationgivenbyexpertekis
istheweightofattributecjselectedbyexpertekfromsetS,wj∈S.
ThistheorycanbeactualizedthroughtheAnalyticalHierarchyProcess(AHP),firstputforwardbyAmericanoperationalresearcherT.L.Saatyinthe1970s.AHPisamethodfordecision-makinganalysisthatcombinesqualitativeandquantitativemethods.Usingthismethod,decision-makerscanseparatecomplexproblemsintoseverallevelsandfactors,andcompareandfindtheweightsfordifferentsolutions,andprovidethebasisfortheoptimumsolution.
AHPfirstclassifiestheproblemintodifferentlevelsbasedonthenatureandthepurposeoftheproblem,constructingamultilevelstructuremodelrankedasthelowestlevel(programfordecisionmaking,measuresetc.),comparedwiththehighestlevel(thehighestpurpose).Ba