国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx

上传人:b****5 文档编号:19750785 上传时间:2023-01-09 格式:DOCX 页数:19 大小:333.08KB
下载 相关 举报
国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx_第1页
第1页 / 共19页
国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx_第2页
第2页 / 共19页
国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx_第3页
第3页 / 共19页
国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx_第4页
第4页 / 共19页
国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx

《国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx》由会员分享,可在线阅读,更多相关《国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx(19页珍藏版)》请在冰豆网上搜索。

国际建模C题O奖RebalancingHumanInfluencedWord格式文档下载.docx

XingyongZhang

Summary

InTask1,weestablishaVolterrapredator-preymodelwiththreebiologicalpopulations,andwespecifythesteady-statenumbersofthethreepopulations.Then,basedontheAnalyticHierarchyProcessandacompetitionmodel,weobtaintheratioofdifferentspeciesinthesecondpopulation,predictthatthesteady-statelevelofwaterqualityisnothigh,andmakethewaterqualitysatisfactorybyadjustingthenumbersofsixspecies.

InTask2,whenmilkfishfarmingsuppressesotheranimalspecies,wesetupalogisticmodel,andpredictthatthewaterqualityatsteady-stateisawful,thesameasinthefishpens—insufficientforthecontinuedhealthygrowthofcoralspecies.Whenotherspeciesarenottotallysuppressed,withanimprovedpredator-preymodelwesimulatethewaterqualityofBolinao(makingitmatchcurrentquality),obtainpredictednumbersofpopulations,anddiscusschangestothepredator-preymodelaimedatmakingthenumbersofthepopulationsagreemorecloselywithobservations.

InTask3,weestablishapolyculturemodelthatreflectsaninterdependentsetofspecies,introducemusselsandseaweedgrowingonthesidesofthepens,andobtainthenumbersofpopulationsinsteadystateandtheoutputsofourmodel.

InTasks4and5,wedifferentiatethemonetaryvaluesofdifferentkindsediblebiomassanddefinethetotalvalueasthesumofthevaluesofeachspeciesharvested,minusthecostofmilkfishfeed.Undercircumstances

TheUMAPJournal30

(2)(2009)121–139.!

cCopyright2009byCOMAP,Inc.Allrightsreserved.Permissiontomakedigitalorhardcopiesofpartorallofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnotice.Abstractingwithcreditispermitted,butcopyrightsforcomponentsofthisworkownedbyothersthanCOMAPmustbehonored.Tocopyotherwise,torepublish,topostonservers,ortoredistributetolistsrequirespriorpermissionfromCOMAP.

ofacceptablewaterquality,webuildanonlinearequilibriumoptimizationmodel,fromwhichweobtainanoptimalstrategyandharvest.

InTask6,weputforwardastrategytoimprovethewaterqualityinBolinao.Withtheratiobetweenfeedcostandnetincomeastheindex,theindexvalueofthemodelissmallerthanthatofBolinaoarea,whichsignifiestheleverageofthestrategy.Also,weanalyzethepolyculturesystemintermsofecology.

Introduction

ToimprovethesituationinBolinao,weneedtoestablishapracticablepolyculturesystemandintroduceitgradually.Soourgoalisprettyclear:

•duction.ModeltheoriginalBolinaocoralreefecosystembeforefishfarmintro-

•ModelthecurrentBolinaomilkfishmonoculture.

•ModeltheremediationofBolinaoviapolyculture.

•Discusstheoutputsandeconomicvaluesofspecies.

•WritemarizingabriefthetorelationshipthedirectorbetweenofthePacificbiodiversityMarineFisheriesandwaterCouncilqualitysum-forcoralgrowth.

Ourapproachis:

•theDeeplycoralanalyzereeffoodweb.dataintheproblem,graduallyestablishingamodelof

•Withavailabledataasevaluationcriteria,confirmthewaterqualitybasedonelementsinthesediment.

•Establishpurposeofmodels,improvingandwaterinterpretquality.theactualsituationwithdata,withthe

•Dofurtherdiscussionbasedonourwork.

Solutions

Task1

Aimingtowardacoralreeffoodwebmodel,weassumethatallthespeciesgrowinthesamefishpen.Wedividethespeciesintothreepopulations:

•onealgaspecies(Population1);

•oneherbivorousfish,onemolluscspecies,onecrustaceanspecies,andoneechinodermspecies(Population2);

and

•thesolepredatorspecies,milkfish(Population3).

TheinterrelationshipsamongthespeciesarepresentedinFigure1.

Onthisbasis,wecanestablishaVolterrapredator-preymodelwiththreepopulations[ShanandTang2007].Letthenumberoftheithpopulationbexi(t).Ifwedonottakeintoconsiderationtherestrictionsofnaturalresources,thealgaespeciesofPopulation1growinginisolationwillfollowanexponentialgrowthlawwithrelativegrowthrater1,sothatx˙(t)=r1x1.However,speciesofPopulation2feedingonthealgaspecieswilldecreasethegrowthrateofthealgae,sotherevisedmodelofthealgaspeciesis

x˙1(t)=x1(r1−λ1x2),

wheretheproportionalitycoefficientλ1reflectsthefeedingcapabilityofspeciesinPopulation2forthealgaspecies.

AssumethatthedeathrateofthespeciesinPopulationIIisr2whenexistinginisolation;

thenx˙2(t)=−r2x2,sobasedonthefoodwebweconcludethat

x˙2(t)=x2(−r2+λ2x1),

wheretheproportionalitycoefficientλ2reflectsthesupportcapabilityofthealgaspeciesforPopulation2—whichinturnprovidefoodforthemilkfish.ThemilkfishreducethegrowthrateofthespeciesinPopulation2,sowemustsubtracttheirfeedingeffecttoget

x˙2(t)=x2(−r2+λ2x1−µ

x3).

Likewise,themodelforthemilkfishis

x˙3(t)=x3(−r3+λ3x2).

Altogether,wehaveaninterdependentandmutually-restrictingmathematicalmodelofthethreepopulations:

Sincethissystemofdifferentialequationshasnoanalyticsolution,weneedtouseMatlabtogetitsnumericalsolution.

Ecologistspointoutthataperiodicsolutioncannotbeobservedinmostbalancedecosystems;

inabalancedecosystem,thereisanequilibrium.Inaddition,someecologiststhinkthatthelong-existingandperiodicallychangingbalancedecosystemsinnaturetendtowardastableequilibrium;

thatis,ifthesystemdivergesfromtheformerperiodiccyclebecauseofdisturbance,aninternalcontrolmechanismwillrestoreit.However,theperiodically-changingstatedescribedbytheVolterramodelisnon-structuredstability,andevensubtleadjustmentstotheparameterswillchangetheperiodicsolution.

Soweimprovethemodelbylettingthealgaspeciesfollowlogisticgrowthifinisolation:

whereN1isthemaximumpopulationofthealgaspeciesallowedbytheenvironmentalresources.ThealgaspeciesprovidesfoodforthespeciesofPopulation2,sothemodelforthealgaespeciesis

whereN2isthemaximumcapacityofthespeciesinPopulation2andσ1referstothequantityofthealgae(comparedtoN1)eatenbytheunitquantityspeciesinPopulation2(comparedtoN2).

Withoutthealgae,thespeciesinPopulation2willperish;

letitsdeathrateber2,sothatinisolationwewillhave:

x˙2(t)=−r2x2.

ThealgaeprovidefoodforPopulation2,soweshouldaddthateffect;

andthegrowthofthespeciesinPopulation2isalsoinfluencedbyinternalblockingaction;

soweget

whereσ2isanalogoustoσ1.Analogously,wecangetafullmodelofthespeciesinPopulation2via

.

WithoutthespeciesinPopulation2,milkfishwilldisappear;

wesettheirdeathrateasr3.ThespeciesinPopulation2providefoodforthemilkfish,andthegrowthofmilkfishisalsorestrictedbyinternalblockingaction.Herethemodelis

Summarizing,wehavesimultaneousequationsconstitutinganinterdependentmathematicalmodelforthethreepopulations:

Weobtainthevaluesofsomeparametersinthemodel,andthroughnonlineardatafittingoftheoriginaldataofthelocalthreepopulations[ShanandTang2007;

Sumagaysay-Chavoso1998;

ChenandChou2001],wegettheirnaturalgrowthrates:

σ1=0.6,σ2=0.5,σ3=0.5,σ4=2;

N1=150×

103,N2=30×

103,N3=2.2×

103.

Accordingtothevolumeoflocalfishpensandrelevantmaterials,wegettheoriginalnumbersofthethreepopulations:

x1(0)=121.5×

103,x2(0)=27×

103,x3(0)=2×

ThenweuseMatlabtoimplementthemodel,withtheresultsofFigure2,whereweseethatcanseethatwiththepassageoftime,thexi(t)tendtothesteady-statevalues69,027,27,015,and1,760.

Thenumber27,015ofthespeciesinPopulation2ismadeupofherbivorousfish,molluscs,crustaceans,andechinoderms.NowweconfirmthenumbersofallthespeciesinPopulation2,whichstayatthesametrophiclevel,coexistingandmutuallycompeting.

Figure2.Numericalsolutionsforxi(t).

WeapplyexpertsystemandgroupdecisiontheorytodeterminetheweightsofthespeciesinPopulation2.Wehaveamulti-attributedecisionproblem,wheretheaimistoselecttheoptimalsolutionfrommanyalternativesortosorttheavailablealternatives.

AssumethatthefinitesolutionsetisY={y1,...,yn},theattributesetisC={c1,...,cq},andthedecisionexpertsetisE={e1,...,em}.LetS={s1,...,sg}beapredefinedsetconsistingofodd-chainelements.ExpertekselectsoneelementfromSasthevalueofsolutionyiunderattributecj;

letitbedenotedas

andlet

denotethejudgmentmatrixofexpertekonallthesolutionsforalltheattributes.Theattributeweightvectorinevaluatinginformationgivenbyexpertekis

istheweightofattributecjselectedbyexpertekfromsetS,wj∈S.

ThistheorycanbeactualizedthroughtheAnalyticalHierarchyProcess(AHP),firstputforwardbyAmericanoperationalresearcherT.L.Saatyinthe1970s.AHPisamethodfordecision-makinganalysisthatcombinesqualitativeandquantitativemethods.Usingthismethod,decision-makerscanseparatecomplexproblemsintoseverallevelsandfactors,andcompareandfindtheweightsfordifferentsolutions,andprovidethebasisfortheoptimumsolution.

AHPfirstclassifiestheproblemintodifferentlevelsbasedonthenatureandthepurposeoftheproblem,constructingamultilevelstructuremodelrankedasthelowestlevel(programfordecisionmaking,measuresetc.),comparedwiththehighestlevel(thehighestpurpose).Ba

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 兵器核科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1