参考答案化工热力学第二版马沛生著化学工业出版社课后答Word格式文档下载.docx

上传人:b****5 文档编号:19619586 上传时间:2023-01-08 格式:DOCX 页数:37 大小:28.14KB
下载 相关 举报
参考答案化工热力学第二版马沛生著化学工业出版社课后答Word格式文档下载.docx_第1页
第1页 / 共37页
参考答案化工热力学第二版马沛生著化学工业出版社课后答Word格式文档下载.docx_第2页
第2页 / 共37页
参考答案化工热力学第二版马沛生著化学工业出版社课后答Word格式文档下载.docx_第3页
第3页 / 共37页
参考答案化工热力学第二版马沛生著化学工业出版社课后答Word格式文档下载.docx_第4页
第4页 / 共37页
参考答案化工热力学第二版马沛生著化学工业出版社课后答Word格式文档下载.docx_第5页
第5页 / 共37页
点击查看更多>>
下载资源
资源描述

参考答案化工热力学第二版马沛生著化学工业出版社课后答Word格式文档下载.docx

《参考答案化工热力学第二版马沛生著化学工业出版社课后答Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《参考答案化工热力学第二版马沛生著化学工业出版社课后答Word格式文档下载.docx(37页珍藏版)》请在冰豆网上搜索。

参考答案化工热力学第二版马沛生著化学工业出版社课后答Word格式文档下载.docx

任何流体的ω值都不是直接测量的,均由该流体的临界温度Tc、临界压力pc值及

Tr=0.7时的饱和蒸气压ps来确定。

2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?

正确。

由纯物质的pCV图上的饱和蒸气和饱和液体曲线可知。

2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗?

同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs自由能是相同的,这是纯物质气液

平衡准则。

气他的热力学性质均不同。

2-6.常用的三参数的对应状态原理有哪几种?

常用的三参数对比态原理有两种,一种是以临界压缩因子Zc为第三参数;

另外一种是以Pitzer提出的以偏心因子ω作为第三参数的对应状态原理。

2-7.总结纯气体和纯液体pVT计算的异同。

许多pCV-T关系如RKS方程、PR方程及BWR方程既可以用于计算气体的pCVCT,又都可以用到液相区,由这些方程解出的最小体积根即为液体的摩尔体积。

当然,还有许多状态方程只能较好地说明气体的pCV-T关系,不适用于液体,当应用到液相区时会产生较大的误差。

与气体相比,液体的摩尔体积容易测定。

除临界区外,温度(特别是压力)对液体容积性质的影响不大。

除状态方程外,工程上还常常选用经验关系式和普遍化关系式等方法来估算。

2-8.简述对应状态原理。

对比态原理认为,在相同的对比状态下,所有的物质表现出相同的性质。

对比态原理是从适用于pCV-T关系两参数对比态原理开始的,后来又发展了适用于许多热力学性质和传递性质的三参数和更多参数的对比态原理。

2-9.如何理解混合规则?

有哪些类型的混合规则?

和分体积定律无法准确地描述流体混合物的pCV-T关系。

如何将适用于纯物质的状态方程扩展到真实流体混合物是化工热力学中的一个热点问题。

目前广泛采用的方法是将状态方程中的常数项,表示成组成x以及纯物质参数项的函数,这种函数关系称作为混合规则。

数项,使其能准确地描述真实流体混合物的pCV-T关系,常常是计算混合热力学性质的关键。

常用的混合规则包括适用于压缩因子图的虚拟临界性质的混合规则、维里系数的混合规

2-10.在一个刚性的容器中,装入了1mol的某一纯物质,容器的体积正好等于该物质的摩尔临界体积Vc。

如果使其加热,并沿着习题图2-1的pCT图中的1→C→2的途径变化(C是临界点)。

请将该变化过程表示在pCV图上,并描述在加热过程中各点的状态和现象。

解:

由于加热过程是等容过程,1→C→2是一条V=VC的等容线,所以在pCV图可以表示为如图的形式。

点1表示容器中所装的是该物质的汽液混合物(由饱和蒸汽和饱和液体组成)。

沿1-2线,是表示等容加热过程。

随着过程的进行,容器中的饱和液体体积与饱和蒸汽体积的相对比例有所变化,但由图可知变化不是很大。

到了临界点C点时,汽液相界面逐渐消失。

继续加热,容器中一直是均相的超临界流体。

在整个过程中,容器内的压力是不断增加的。

则以及适用于立方型状态方程的混合规则。

对于不同的状态方程,有不同的混合规则。

寻找适当的混合规则,计算状态方程中的常

对于真实流体,由于组分的非理想性及由于混合引起的非理想性,使得理想的分压定律

C=9.0×

103m6kmol2,试计算:

(1)SO2在431K、10×

105Pa下的摩尔体积;

时所作的功。

解:

(1)三项维里方程为:

Z=

(A)

pVBC

=1++2RTVV

将p=10×

105Pa,T=431K,B=0.159mkmol,C=9.0×

10mkmol代入式(A)并整理得:

3

(2)在封闭系统内,将1kmolSO2由10×

105Pa恒温(431K)可逆压缩到75×

105Pa

0.279V3V2+0.159V9×

106=0

迭代求解,初值为:

V=

RT

=3.5m3kmol1p

(2)压缩功W=pdV

迭代结果为:

V=3.39mkmol

由(A)式得:

p=RT

V2

BC1

+2+3,则:

VVV

W=RT∫+2+3dV

V1VVVV211C11=RTlnBVV2V2V2V11212

当p=75×

105Pa时,用

(1)同样的方法解出:

aw

.com

6

2

2-11.已知SO2在431K下,第二、第三Virial系数分别为:

B=0.159mkmol,

31

(B)

V=0.212m3kmol1

将V1=3.39mkmol,V2=0.212mkmol代入式(B)解出:

W=77×

105Jkmol1

2-12.试计算一个125cm3的刚性容器,在50℃和18.745MPa的条件下能贮存甲烷多少克(实验值为17g)?

分别用理想气体方程和RK方程计算(RK方程可以用软件计算)。

由附录三查得甲烷的临界参数为:

Tc=190.56K,pc=4.599MPa,ω=0.011

(1)利用理想气体状态方程pV=RT得:

V=

RT8.314×

(273.15+50)==1.433×

104m3mol1=143.3cm3mol1

p18.745×

10

(2)RK方程

式中:

b=0.08664RTc/pc=

bp2.985×

105×

18.745×

106

B=0.2083

323.15

按照式(2-16a)Z=

ap3.2207×

A=22.5=0.*****.5

323.15后

和式(2-16b)

迭代计算,取初值Z=1,迭代过程和结果见下表。

迭代次数

1Ah1h

2.2342=1hB1+h1h1h+

h=

a=0.*****RT

2.5c

0.*****×

(8.314)×

(190.56)/pc==3.2207Pam6K0.5mol-2

4.599×

2.5

0.08664×

8.314×

190.56531

2.985×

10mmol

bB0.2083==VZZ

Z

h

网w

p=

RTa

0.5

VbTV(V+b)

V125

m=M=16×

=13.95g

V143.3

01234

10.*****.*****.*****.8823

0.*****.*****.*****.*****.2361

ZRT0.8823×

323.154331

==1.265×

10m/mol=126.5cmmolp18.745×

=16×

=15.81gV126.5

m=M

可见,用RK方程计算更接近实验值。

2-13.欲在一个7810cm3的钢瓶中装入1kg的丙烷,且在253.2℃下工作,若钢瓶的安全工作压力为10MPa,问是否安全?

查得丙烷的临界性质为:

Tc=369.83K,pc=4.248MPa,ω=0.152

使用RK方程:

首先用下式计算a,b:

c

8.3142×

369.832.560.5-2

/pc=0.*****×

=18.296PamKmol

4.248×

V总7810×

106

V===343.63×

106m3mol1

n22.727

代入RK方程得:

p=9.870MPa非常接近于10MPa,故有一定危险。

2-14.试用RKS方程计算异丁烷在300K,3.704×

105Pa时的饱和蒸气的摩尔体积。

已知实验值为V=6.081×

10mmol。

由附录三查得异丁烷的临界参数为:

Tc=407.8K,pc=3.640MPa,ω=0.177

Tr=T/Tc=300/407.8=0.7357

m=0.480+1.574ω0.176ω2=0.480+1.574×

0.1770.176×

0.1772=0.7531

b=0.08664RTc/pc=0.08664×

8.314×

369.83531

=6.2771×

10mmol

n=

m1000==22.727molM44

α(T)=1+m(1Tr0.5)=1+0.7531(10.*****.5)=1.2258

2[][

]

a(T)=aα(T)=0.4278RT

2c

22

(8.314)×

(407.8)62

/pcα(T)=0.*****×

×

1.2258=1.6548(Pam)/mol6

3.640×

b=0.08664RTc/pc=0.08664×

407.8/(3.640×

106)=8.0700×

105m3/molap1.6548×

3.704×

105

A=22=0.***-*****

300bp8.0700×

B=0.01198

300

8.2245=1hB1+h1h1+h

迭代次数0*****

0.*****.*****.*****.*****.9061

w案课

(6.0316.1015)×

102/6.031×

102=1.2%

误差

2-15.试分别用RK方程及RKS方程计算在273K、1000×

105Pa下,氮的压缩因子值,已知实验值为Z=2.0685。

由附录三查得氮的临界参数为:

Tc=126.10K,pc=3.394MPa,ω=0.040

(1)RK方程

ZRT0.9061×

30023

==6.1015×

10m/mol6p3.704×

(126.10)60.5-2

/pc==1.5546PamKmol

3.394×

126.10531

2.6763×

0.0*****.0*****.0*****.0*****.0*****.01322

bB0.01198==VZZ

ap1.5546×

100×

A=22.51.*****.5

273bp2.6763×

1000×

=1.1791B=

273RT

1.5489=1hB1+h1h1+h

bB1.1791

==VZZ

迭代计算,取初值Z=2,迭代过程和结果见下表。

01234……..

21.8622.*****.*****.8823

迭代不收敛,采用RK方程解三次方程得:

pV4.422×

==1.9485Z=

RKS方程

Tr=T/Tc=273/126.1=2.1649

0.0400.176×

0.0402=0.5427

α(T)=1+m(1Tr0.5)=1+0.5427(12.*****.5)=0.5538

2[

][

V=0.***-*****m3/mol

(126.1)6

()/mol/pcα(T)=0.*****×

0.5538=0.0*****Pam6

126.1/(3.394×

106)=2.6763×

105m3/molap0.0*****×

A=22==1.*****

273.k

迭代次数Zh

bp2.6763×

B==1.1791

273

1.2621=1hB1+h1h1+h

和式(2-16b)同样迭代不收敛

采用RKS方程解三次方程得:

2-16.试用下列各种方法计算水蒸气在107.9×

105Pa、593K下的比容,并与水蒸气表查出的数据(V=0.01687mkg)进行比较。

(1)理想气体定律

(2)维里方程(3)普遍化RK方程

(1)理想气体定律

误差=

(2)维里方程

Tr=

p107.9×

pr===0.4896

pc22.055×

使用普遍化的第二维里系数:

T593==0.916Tc647.13

0.016870.02538

×

100%=50.5%

0.01687

59363131

==4.569×

10mmol=0.02538mkgp107.9×

B(0)=0.0830.422/Tr1.6=0.083

B

(1)=0.1390.172/Tr4.2=0.139

从附录三中查得水的临界参数为:

Tc=647.13K,pc=22.055MPa,ω=0.345

0.422

=0.4026Tr1.6

0.172

=0.*****.2

Tr

pV4.512×

Z===1.9881

Bpc

=B(0)+ωB

(1)=0.4026+0.345×

(0.1096)=0.4404RTc

BpcprBp0.489

Z=1+=1+=1+×

(0.4404)=0.76490.916RTRTcTrV=

ZRT0.7649×

593

==3.495×

106m3mol1=0.01942m3kg1

5

100.016870.01942

100%=15.1%

a1

1hbTr1.5bprZTr

h1+h

(3)普遍化R-K方程

将对比温度和对比压力值代入并整理的:

联立上述两式迭代求解得:

Z=0.7335

水是极性较强的物质

2-17.试分别用

(1)vanderWaals方程;

(2)RK方程;

(3)RKS方程计算273.15K时将CO2压缩到体积为550.1cmmol所需要的压力。

实验值为3.090MPa。

从附录三中查得CO2的临界参数为:

Tc=304.19K,pc=7.382MPa,ω=0.228

(1)vanderWaals方程

0.016870.01862

100%=10.4%

ZRT0.7335×

==3.3515×

10mmol=0.01862mkgp107.9×

VbV

22c

27×

(304.19)32

a=27RT/64pc==0.3655Pammol

64×

7.382×

bpr0.04625

=ZTrZ

1hbTr1.51h15.628=

++1h1h1h

(2-38a)

(2-38b)

b=RTc/8pc=

304.19531

=4.282×

RTa8.314×

273.150.3655

2=-=3.269×

106Pa=3.269MPa662

VbV550.1×

10-42.82×

*****.1×

1063.0903.269

100%=5.79%

3.090

误差%=

(304.19)6.4599Pam6K0.5mol-2a=0.*****R2Tc2.5/pc=6

7.382×

(3)RKS方程

=3.138×

106Pa=3.138MPa

3.0903.138

误差%=×

100%=1.55%

式中,

a(T)=aα(T)=0.4278R2Tc2/pcα(T)α(T)=1+m(1Tr0.5)

273.156.4599

=-

550.1×

106-29.68×

106273.150.5×

550.1×

106×

550.1+29.68×

RTa(T)

VbVV+b[

而,m=0.480+1.574ω0.176ω=0.480+1.574×

0.228-0.176×

(0.228)=0.8297

304.19

2.968×

105m3mol1

2273.150.5

则,α(T)=1+m(1Tr)=1+0.8297×

1=1.089304.19

[]

(304.19)a(T)=aα(T)=0.*****RT/pcα(T)=×

1.0896

=0.*****Pam3mol1

b=0.08664RTc/pc=p=

RTa(T)8.314×

273.150.*****

VbVV+b550.1×

106550.1×

3.0903.099

100%=0.291%

=3.099×

106Pa=3.099MPa

最好。

RK方程的计算精度还可以。

2-18.一个体积为0.3m3的封闭储槽内贮乙烷,温度为290K、压力为25×

105Pa,若将乙烷加热到479K,试估算压力将变为多少?

因此:

Tr1=T1/Tc=290/305.32=0.95pr1=p1/pc=2.5/48.72=0.513

故使用图2-11,应该使用普遍化第二维里系数计算

0.950.172

prBp

=1+(B(0)+ωB

(1))TRTr

0.95答

V总0.3==392.2(mol)5V76.5×

加热后,采用RK方程进行计算。

其中:

T=479K,摩尔体积仍然为V=76.5×

10mmol,首先计算:

ZRT0.7935×

290531

()==76.5×

10mmol5

p25×

Z=1+

0.513

()=

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 英语考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1