一元一次方程应用题专题Word格式.docx
《一元一次方程应用题专题Word格式.docx》由会员分享,可在线阅读,更多相关《一元一次方程应用题专题Word格式.docx(9页珍藏版)》请在冰豆网上搜索。
(1)商品利润=商品售价-商品成本价
(2)商品利润率=
×
100%
(3)商品销售额=商品销售价×
商品销售量
(4)商品的销售利润=(销售价-成本价)×
销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
6.行程问题:
路程=速度×
时间时间=路程÷
速度速度=路程÷
时间
(1)相遇问题:
快行距+慢行距=原距
(2)追及问题:
快行距-慢行距=原距
(3)航行问题:
顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
7.工程问题:
工作量=工作效率×
工作时间
完成某项任务的各工作量的和=总工作量=1
8.储蓄问题
利率=
100%利息=本金×
利率×
期数
经典例题
基础练习:
1、列方程表示下列语句所表示的等量关系:
①某校共有学生1049人,女生占男生的40%,求男生的人数。
②两个村共有834人,甲村的人数比乙村的人数的一半还少111人,两村各有多少人?
(3)某人共用142元买了两种水果共20千克,已知甲种水果每千克8元,乙水果每千克6元,问这两种水果各有多少千克?
2.
(1)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
(2)、一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天?
3.
(1)兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?
(2)、小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的1/3,求小强叔叔今年的年龄。
4、在全国足球甲级A组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该对共胜了多少场
5.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,
≈3.14).
6.
(1)有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.
(2)某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。
求两车的速度。
(3)、甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站
出发,每小时行驶80千米,问:
1)两车同时开出,相向而行,出发后多少小时相遇?
2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?
附加题:
1、甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.
(1)当两人同时同地背向而行时,经过几秒钟两人首次相遇?
(2)两人同时同地同向而行时,经过几秒钟两人首次相遇.
7
(1)、一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。
已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离。
(2)、一艘船从A港到B港顺流行驶,用了5小时;
从B港返回A港逆流而行,用了7.5小时,已知水流的速度是3千米/时,求船在静水中的速度。
8.
(1)有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:
3:
5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?
(2)、学校有电视和幻灯机共90台,已知电视机和幻灯机的台数比为2:
3,求学校有电视机和幻灯机各多少台?
9.
(1)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.
(2)、用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?
(3)、甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?
10
(1)把一些图书分给某班学生,如果每人4本,则剩余12本,如果每人分5本,则还缺30本,问该班有多少学生?
(2)、一批宿舍,若每间住1人,有10人无处住;
若每间住3人,则有10间宿舍无人住,那么这批宿舍有多少间,人有多少个?
11
(1)、四个连续的奇数的和为32,这四个数分别是什么?
(2)、有一列数,按一定规律排列成
,
,……其中某三个相邻数的和是
,求这三个数各是多少?
(3)、一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原数大63,求原来的两位数。
12
(1)、一商场把彩电按标价的九折出售,仍可获利20%,如果该彩电的进货价是2400元,那么彩电的标价是多少元?
(2)、某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?
(3)、某种品牌电风扇的标价为165元,若降价以九折出售,仍可获利10%(相对于成本价),那么该商品的成本价是多少?
(4)、某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
13.大红,小红过年收到的压岁钱共1000元,大红把他的压岁钱按一年期教育储蓄存入银行,年利率为1.98%,免收利息税;
小红把他的压岁钱买了月利率为2.15‰的债券,但要
交纳20%的利息税,一年后两人的到的收益恰好相等,两人压岁钱个是多少钱?
14、在某个月的日历中,圈出一个竖列上相邻的三个日期,如果它们的和为30,那么这三天分别是几号?
15.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?
应交电费是多少元?
16.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
17.某地的出租车收费标准是:
起步价10元(即行驶距离不超过4千米都需付10元),超过4千米以后,每增加1千米加收1.2元(不足1千米按1千米计算)。
某人乘这种出租车下车时交付了16元车费,那么他搭乘出租车最多走了多少千米(不计等候时间)?
18、小明到希望书店帮同学们购书,售货员告诉他,如果用20元钱办“希望书店会员卡”,将享受八折优惠,请问在这次买书中,小明在什么情况下,办会员卡与不办会员卡一样?
当小明买标价为200元的书时,怎么合算,能省多少钱?
19、
(1)下面是两种移动电话计费方式表
方式一
方式二
月租费
50元/月
本地通话费
0.2元/分
0.6元/分
(1)若某人一个月内在本地通话100分,选择哪一种方式比较合算?
(2)若某人一个月内在本地通话150分,选择哪一种方式比较合算?
(3)你认为如何选择会更加合算些?
(2)、下面是两种移动电话计费方式表
方式一方式二
月租费50元/月0
本地通话费0.6元/分0.2元/分
四、拓展提升
1.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;
规定吨数以上的超过部分收费标准相同,以下是小明家1—4月份用水量和交费情况:
月份
1
2
3
4
用水量(吨)
8
10
12
15
费用(元)
16
20
26
35
根据表格中提供的信息,回答以下问题:
(1)求出规定吨数和两种收费标准;
(2)若小明家5月份用水20吨,则应缴多少元?
(3)若小明家6月份缴水费29元,则6月份用水多少吨?
2.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;
月份1234
用水量(吨)8101215
费用(元)16202635
1)求出规定吨数和两种收费标准;
2)若小明家5月份用水20吨,则应缴多少元?
3)若小明家6月份缴水费29元,则6月份用水多少吨?
2、某商店购进一种商品,出售时在进价的基础上加了一定的利润,若数量x与售价y之间的关系如下表(表中售价栏内的0.10是包装费用)。
请你观察下表,并回答:
数量x(单位:
千克)售价y(单位:
元)
13+0.5+0.126+1+0.139+1.5+0.1412+2+0.1
……
1)写出用数量x表示售价y的关系式。
2)小明的妈妈用56.1元买了多少千克的商品?
经典例题答案
1.解:
设甲、乙一起做还需x小时才能完成工作.
根据题意,得
+(
+
)x=1解这个方程,得x=
=2小时12分答:
甲、乙一起做还需2小时12分才能完成工作.
2.解:
设x年后,兄的年龄是弟的年龄的2倍,
则x年后兄的年龄是15+x,弟的年龄是9+x.由题意,得2×
(9+x)=15+x
18+2x=15+x,2x-x=15-18∴x=-3
答:
3年前兄的年龄是弟的年龄的2倍.
(点拨:
-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)
3.解:
设圆柱形水桶的高为x毫米,依题意,得
·
(
)2x=300×
300×
80x≈229.3
圆柱形水桶的高约为229.3毫米.
4.解:
设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为
分.
过完第二铁桥所需的时间为
依题意,可列出方程
=
解方程x+50=2x-50得x=100
∴2x-50=2×
100-50=150答:
第一铁桥长100米,第二铁桥长150米.
5.解:
设这种三色冰淇淋中咖啡色配料为2x克,
那么红色和白色配料分别为3x克和5x克.
根据题意,得2x+3x+5x=50解这个方程,得x=5
于是2x=10,3x=15,5x=25
这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.
6.解:
设这一天有x名工人加工甲种零件,
则这天加工甲种零件有5x个,乙种零件有4(16-x)个.
根据题意,得16×
5x+24×
4(16-x)=1440解得x=6
这一天有6名工人加工甲种零件.
7.解:
(1)由题意,得
0.4a+(84-a)×
0.40×
70%=30.72解得a=60
(2)设九月份共用电x千瓦时,则0.40×
60+(x-60)×
70%=0.36x
解得x=90所以0.36×
90=32.40(元)
九月份共用电90千瓦时,应交电费32.40元.
8.解:
按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,
设购A种电视机x台,则B种电视机y台.
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程
1500x+2100(50-x)=90000
即5x+7(50-x)=3002x=50x=2550-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:
一是购A,B两种电视机25台;
二是购A种电视机35台,C种电视机15台.
(2)若选择
(1)中的方案①,可获利150×
25+250×
15=8750(元)
若选择
(1)中的方案②,可获利150×
35+250×
15=9000(元)
9000>
8750故为了获利最多,选择第二种方案.