高考数学专题:解析几何新题型的解题技巧.doc

上传人:b****3 文档编号:1866172 上传时间:2022-10-24 格式:DOC 页数:17 大小:1.76MB
下载 相关 举报
高考数学专题:解析几何新题型的解题技巧.doc_第1页
第1页 / 共17页
高考数学专题:解析几何新题型的解题技巧.doc_第2页
第2页 / 共17页
高考数学专题:解析几何新题型的解题技巧.doc_第3页
第3页 / 共17页
高考数学专题:解析几何新题型的解题技巧.doc_第4页
第4页 / 共17页
高考数学专题:解析几何新题型的解题技巧.doc_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

高考数学专题:解析几何新题型的解题技巧.doc

《高考数学专题:解析几何新题型的解题技巧.doc》由会员分享,可在线阅读,更多相关《高考数学专题:解析几何新题型的解题技巧.doc(17页珍藏版)》请在冰豆网上搜索。

高考数学专题:解析几何新题型的解题技巧.doc

解析几何题型

命题趋向:

解析几何例命题趋势:

1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以填空题的形式出现,每年必考

2.考查直线与二次曲线的普通方程,属容易题,对称问题常以填空题出现

3.考查圆锥曲线的基础知识和基本方法的题多以填空题的形式出现,有时会出现有一定灵活性和综合性较强的题,如求轨迹,与向量结合,与求最值结合,属中档题

考点透视

一.直线和圆的方程

1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.

3.了解二元一次不等式表示平面区域.

4.了解线性规划的意义,并会简单的应用.

5.了解解析几何的基本思想,了解坐标法.

6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.

二.圆锥曲线方程

1.掌握椭圆的定义、标准方程和椭圆的简单几何性质.

2.掌握双曲线的定义、标准方程和双曲线的简单几何性质.

3.掌握抛物线的定义、标准方程和抛物线的简单几何性质.

4.了解圆锥曲线的初步应用.

考点1.求参数的值

求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之.

例1.若抛物线的焦点与椭圆的右焦点重合,则的值为

考查意图:

本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质.

解答过程:

椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,

考点2.求线段的长

求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之.

例2.已知抛物线y-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于

考查意图:

本题主要考查直线与圆锥曲线的位置关系和距离公式的应用.

解:

设直线的方程为,由,进而可求出的中点,又由在直线上可求出,

∴,由弦长公式可求出.

例3.如图,把椭圆的长轴

分成等份,过每个分点作轴的垂线交椭圆的上半部

分于七个点,是椭圆的一个焦点,

则____________.

考查意图:

本题主要考查椭圆的性质和距离公式的灵活应用.

解答过程:

由椭圆的方程知

故填35.

考点3.曲线的离心率

曲线的离心率是高考题中的热点题型之一,其解法为充分利用:

(1)椭圆的离心率e=∈(0,1)(e越大则椭圆越扁);

(2)双曲线的离心率e=∈(1,+∞)(e越大则双曲线开口越大).

结合有关知识来解题.

例4.已知双曲线的离心率为2,焦点是,,则双曲线方程为

考查意图:

本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等基本概念.

解答过程:

所以

小结:

对双曲线的标准方程和双曲线的离心率以及焦点等基本概念,要注意认真掌握.尤其对双曲线的焦点位置和双曲线标准方程中分母大小关系要认真体会.

例5.已知双曲线,则双曲线右支上的点P到右焦点的距离与点P到右准线的距离之比等于

考查意图:

本题主要考查双曲线的性质和离心率e=∈(1,+∞)的有关知识的应用能力.

解答过程:

依题意可知.

考点4.求最大(小)值

求最大(小)值,是高考题中的热点题型之一.其解法为转化为二次函数问题或利用不等式求最大(小)值:

特别是,一些题目还需要应用曲线的几何意义来解答.

例6.已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是.

考查意图:

本题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小)值的方法.

解:

设过点P(4,0)的直线为

考点5圆锥曲线的基本概念和性质

圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心.

例7.在平面直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O.椭圆=1与圆C的一个交点到椭圆两焦点的距离之和为10.

(1)求圆C的方程;

(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.

[考查目的]本小题主要考查直线、椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.

[解答过程]

(1)设圆C的圆心为(m,n)

则解得

所求的圆的方程为

(2)由已知可得,.

椭圆的方程为,右焦点为F(4,0);

假设存在Q点使,

整理得,代入.

得:

因此不存在符合题意的Q点.

例8.如图,曲线G的方程为.以原点为圆心,以

为半径的圆分别与曲线G和y轴的正半轴相交于A与点B.直线

AB与x轴相交于点C.

(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;

(Ⅱ)设曲线G上点D的横坐标为,求证:

直线CD的斜率为定值.

[考查目的]本小题综合考查平面解析几何知识,主要涉及平面直角坐标素中的

两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系

,考查运算能力与思维能力,综合分析问题的能力.

[解答过程](I)由题意知,

因为

由于

(1)

由点B(0,t),C(c,0)的坐标知,直线BC的方程为

又因点A在直线BC上,故有

(1)代入上式,得解得.

(II)因为,所以直线CD的斜率为

所以直线CD的斜率为定值.

例9.已知椭圆,AB是它的一条弦,是弦AB的中点,若以点为焦点,椭圆E的右准线为相应准线的双曲线C和直线AB交于点,若椭圆离心率e和双曲线离心率之间满足,求:

(1)椭圆E的离心率;

(2)双曲线C的方程.

解答过程:

(1)设A、B坐标分别为,

则,,二式相减得:

所以,,则;

(2)椭圆E的右准线为,双曲线的离心率,

设是双曲线上任一点,则:

两端平方且将代入得:

或,

当时,双曲线方程为:

,不合题意,舍去;

当时,双曲线方程为:

,即为所求.

小结:

(1)“点差法”是处理弦的中点与斜率问题的常用方法;

(2)求解圆锥曲线时,若有焦点、准线,则通常会用到第二定义.

考点6利用向量求曲线方程和解决相关问题

利用向量给出题设条件,可以将复杂的题设简单化,便于理解和计算.

典型例题:

例10.双曲线C与椭圆有相同的焦点,直线y=为C的一条渐近线.

(1)求双曲线C的方程;

(2)过点P(0,4)的直线,交双曲线C于A,B两点,交x轴于Q点(Q点与C的顶点不重合).当,且时,求Q点的坐标.

考查意图:

本题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力,以及运用数形结合思想,方程和转化的思想解决问题的能力.

解答过程:

(Ⅰ)设双曲线方程为,

由椭圆,求得两焦点为,

对于双曲线,又为双曲线的一条渐近线

解得,

双曲线的方程为

(Ⅱ)解法一:

由题意知直线的斜率存在且不等于零.

设的方程:

,,则.

.

在双曲线上,.

同理有:

若则直线过顶点,不合题意.

是二次方程的两根.

,此时.

所求的坐标为.

解法二:

由题意知直线的斜率存在且不等于零

设的方程,,则.

,分的比为.

由定比分点坐标公式得

下同解法一

解法三:

由题意知直线的斜率存在且不等于零

设的方程:

,则.

,.

,,,

又,,即.

将代入得.

,否则与渐近线平行.

.

.

.

解法四:

由题意知直线l得斜率k存在且不等于零,设的方程:

,,则

.

.同理 .

.

即 . (*)

消去y得.

当时,则直线l与双曲线得渐近线平行,不合题意,.

由韦达定理有:

代入(*)式得 .

所求Q点的坐标为.

例11.设动点P到点A(-l,0)和B(1,0)的距离分别为d1和d2,

∠APB=2θ,且存在常数λ(0<λ<1=,使得d1d2sin2θ=λ.

(1)证明:

动点P的轨迹C为双曲线,并求出C的方程;

(2)过点B作直线交双曲线C的右支于M、N两点,试确定λ的范围,

使·=0,其中点O为坐标原点.

[考查目的]本小题主要考查直线、双曲线等平面解析几何的基础知识,考查综合

运用数学知识进行推理运算的能力和解决问题的能力.

[解答过程]解法1:

(1)在中,,即,

,即(常数),

点的轨迹是以为焦点,实轴长的双曲线.

方程为:

(2)设,

①当垂直于轴时,的方程为,,在双曲线上.

即,因为,所以.

②当不垂直于轴时,设的方程为.

由得:

由题意知:

,所以,.

于是:

因为,且在双曲线右支上,所以

由①②知,.

解法2:

(1)同解法1

(2)设,,的中点为.

①当时,,

因为,所以;

②当时,.

又.所以;

由得,由第二定义得

所以.

于是由得

因为,所以,又,

解得:

.由①②知.

考点7利用向量处理圆锥曲线中的最值问题

利用向量的数量积构造出等式或函数关系,再利用函数求最值的方法求最值,要比只利用解析几何知识建立等量关系容易.

例12.设椭圆E的中心在坐标原点O,焦点在x轴上,离心率为,过点的直线交椭圆E于A、B两点,且,求当的面积达到最大值时直线和椭圆E的方程.

解答过程:

因为椭圆的离心率为,故可设椭圆方程为,直线方程为,

由得:

,设,

则…………①

又,故,即…………②

由①②得:

,,

则=,

当,即时,面积取最大值,

此时,即,

所以,直线方程为,椭圆方程为.

小结:

利用向量的数量积构造等量关系要比利用圆锥曲线的性质构造等量关系容易.

例13.已知,,且,求的最大值和最小值.

解答过程:

设,,,

因为,且,

所以,动点P的轨迹是以A、B为焦点,长轴长为6的椭圆,

椭圆方程为,令,

则=,

当时,取最大值,

当时,取最小值.

小结:

利用椭圆的参数方程,可以将复杂的代数运算化为简单的三角运算.

考点8利用向量处理圆锥曲线中的取值范围问题

解析几何中求变量的范围,一般情况下最终都转化成方程是否有解或转化成求函数的值域问题.

例14.已知椭圆的左焦点为F,O为坐标原点.

(I)求过点O、F,并且与椭圆的左准线相切的圆的方程;

(II)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.

考查意图:

本小题主要考查直线、圆、椭圆和不等式等基本知识,考

查平面解析几何的基本方法,考查运算能力和综合解题能力.

解答过程:

(I)

圆过点O、F,

圆心M在直线上.

设则圆半径

由得

解得

所求圆的方程为

(II)设直线AB的方程为

代入整理得

直线AB过椭圆的左焦点F,方程有两个不等实根.

记中点

的垂直平分线NG的方程为

令得

点G横坐标的取值范围为

例15.已知双曲线C:

,B是右顶点,F是右焦点,点A在x轴正半轴上,且满足成等比数列,过F作双曲线C在第一、三象限的渐近线的垂线,垂足为P,

(1)求证:

(2)若与双曲线C的左、右两支分别相交于点D,E,求双曲线C的离心率e的取值范围.

解答过程:

(1)因成等比数列,故,即,

直线:

由,

故:

则:

,即;

(或,即)

(2)由,

 由得:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 广告传媒

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1