低速车身控制系统实施高速的CAN协议.docx

上传人:b****3 文档编号:1847347 上传时间:2022-10-24 格式:DOCX 页数:7 大小:94.36KB
下载 相关 举报
低速车身控制系统实施高速的CAN协议.docx_第1页
第1页 / 共7页
低速车身控制系统实施高速的CAN协议.docx_第2页
第2页 / 共7页
低速车身控制系统实施高速的CAN协议.docx_第3页
第3页 / 共7页
低速车身控制系统实施高速的CAN协议.docx_第4页
第4页 / 共7页
低速车身控制系统实施高速的CAN协议.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

低速车身控制系统实施高速的CAN协议.docx

《低速车身控制系统实施高速的CAN协议.docx》由会员分享,可在线阅读,更多相关《低速车身控制系统实施高速的CAN协议.docx(7页珍藏版)》请在冰豆网上搜索。

低速车身控制系统实施高速的CAN协议.docx

低速车身控制系统实施高速的CAN协议

低速车身控制系统实施高速的CAN协议

i.低速低速车身控制系统的含义

低速(小于125kbit/s)车身控制系统主要指汽车灯光、刮水器、电动窗、后视镜、中央门锁、加热-通风-空调以及其他低速

数据的通信系统。

低优先级和低通信量的低速车身控制信息,若采用高速数据总线结构,那是不合理的,尤其是生产成本和维修费用令人难以接受。

近年来,各种有专利权的协议已经用于车身控制系统。

这些

协议是不通用的,而且有一定的局限性。

ISO提出了CAN作为汽

车高速数据总线的标准,目前CAN芯片的制造厂商有英特尔、摩托罗拉、NEC飞利浦、西门子和国家半导体等公司,在市场上很容易购到,因为CAN技术除了在汽车上,在飞机、轮船以及工业控制中都得到了广泛的应用。

CAN虽然是国际标准化组织推荐的汽车高速网络标准,当然也可将其用于低速的车身控制系统。

从工程的观点出发,如果选用同类的CAN协议,则很容易从高速到低速网络或从低速到高速网络桥接数据。

然而,当CAN系统被配置于低速应用,若CAN的芯片仍然与高速应用的芯片相同,这是不经济的。

由沃威克大学先迸技术中心与飞利浦公司开发的串行链路输入/输出控制器区

域网(SLIOCAN)发展和改进了CAN技术,能以低成本的造价满足

低速车身控制系统的应用。

2•什么是串行链路输入/输出控制器区域网(SLIOCAN)

SLIOCAN是一种用来完成简单输入/输出功能的低智能CAN芯片oSLIOCAN的最简单结构可以看作带有内部CAN空制器的I/O端口,它具有CAN协议规定的全部特征和能力以及符合CAN2.Oa

和CAN2.Ob无源)规格。

它具有11位CAN标识符和29位忽略标识符,不会便总线出错。

SLIOCAN若扩展到低速应用,采用它的内部振荡器,可达

到125kbit/s的速率;如果采用外部晶体振荡器,它也可以操作在250kbit/s的速率。

一般情况下,推荐它操作于无外部晶体时钟的条件,目的是便SLIO接口简单而便宜。

标准的CAN与SLIOCAN对比,前者的所有微控制器通过物理层连接到一根双绞总线上;而后者是用低智能的只带有内部

CAN控制器的I/O端口一一SLIOCAN代替微控制器,也就是说,SLIOCAN系统中只用了唯一的一个微控制器。

由于SLIOCAN是一种低智能装置,它要靠1个智能主节点编程和控制。

智能主节点是1种含有微控制器的CAN节点。

全部16个SLIO都受控于SLIOCAN总线上的一一个主节点。

由于各个SLIO中有4个标识位,产生-16个不同的标识符(表3-5-1的P。

、P1、P2和P3)。

考虑合并两个不同制造厂有不同标识符设定(如各

不相同的IDI)的SLIO,将会给出32个SLIO节点(如飞利浦和国家半导体公司各16个)。

11位CAN标识符中的IDO指示的数据传

输的方向有两种情况:

当IDO为“0”时,信息方向从主控制器传送至SLIO,而当TOO为“1”时,信息方向刚好相反。

在SLIOCAN系统中,主控制器也能使用遥控帧轮询它的Sule)从节点。

另外,SLIOCAN系统中的数据字节,一直被制造厂固定为2个或3个字

节。

在数据字段(主存储器中保存数据记录的一个区域)中,第一数据字节起到命令寄存器和状态寄存器一样的功用,而其余的数据字节将与SLIO的输入/输出引脚相适配(8位或16位)。

各个SLIO端口的引脚可以单独编程。

表1与CAN11位标识符相关的SLIO标识符

11位

CAN

标符

ID+0

ID9

ID8

ID7

ID6

ID5

ID4

ID3

ID2

ID1

ID0

SLIO

标识

0

1

P3

1

0

P2

P1

P0

1

0

Dir

Dir:

SLIOCAN信息的方向位;P0-P3:

SLIO标识符设定点。

3.SLIO的物理寻址方法

由于SLIO标识符为4位,SLIOCAN继承了由一特定标识符

指定每个SLIOCAN节点的物理寻址方法。

一般情况下,不再采用CAN系统的功能寻址方法。

例如,在车内的某一个SLIOCAN

系统中,为了接通右转向信号灯,两个数据帧必须送到汽车的前、后SLIO分支点,如果采用了功能寻址,那么,被调作“转向信号”的功能帧将在网络上广播,这样,全部对应的接收器将会接收和处理"转向"的信息,结果导致数据混乱。

除此之外,SLIO还按虚

拟主-从结构操作至一定的级别,SLIO主节点的相关情况如图1

所示。

SUOSLIOSLIO

>!

»■>!

»-*■—■■•亠1-一一-

图1在同一总线上包括有其他CAN节点的SLIO

前述提到,在一根CAN总线上的全部16个SLIO,只须由1个主节点控制,在某些情况下它们可以分为组并受几个主控制器的控制。

不管怎么说,同一总线上的SLIO的总数不能超过16(或32)个。

而在多主机的条件下,仅需对一个主机定标。

从图1中可看

出,由于CAN的广播方法,所有的其他CAN节点(主节点和SLIO节点)也能接收SLIO发送的信息,因此,SLIO的物理寻址方法最重要的是确保其他智能节点(专用的主节点除外)不能对数据起作用,否则将导致数据混乱和差错。

4.SLIOCAN的信息发送方式

为了让SLIO的内部振荡器同步以供总线定时,主控制器须每隔3800位时间发送I条标定帧,只需要标定了SLIO节点就能发送I条CAN信息。

SLIO的传输是由内部CAN控制器硬件逻辑自动完成的。

在初

始化过程中,SLIO安排完成一定的功能,例如事件捕获输入、输出或模/数转换。

初始化是通过编程的SLIO节点,经CAN总线然后置微控制器主节点于启动状态。

同样也只需标定SLIO节点就能传送一条CAN信息。

在接收端,SLIO具有只有该节点才有的标识符,将自动应答内部CAN控制器逻辑。

例如,ID644被主节点送至SLI0节点,如果信息已被校正接收,贝USLIO用ID645响应。

应答帧由SLIO寄存器的现状态和现值组成,这将对主控制器发送的信息和SLIO的现状态作一次校核。

此外,SLIO使用CAN中的

应答时隙(空位),只响应标定帧,不发送应答帧。

如果新的SLIO节点添加到SLIOCAN网络中,该新节点将会按自身对主控制器的已知量,在8000位时间内至少能检测3

个帧。

这种检验新节点存在的信息,可能会对总线或某一监视帧起到一些作用。

新的SLIO将用一条有标记的信息应答主机,表明

自己的存在,唯一的准则就是新的SLIO节点必须具有与现存的

CAN节点不同的标识符。

5.SLIOCAN的总线长度较CAN缩短了多少

由于SLIOCAN缺少石英振荡器的精度,所以SLIO的内部位计时逻辑是以最大的振荡器容限作为最佳选择条件,这就要求缩短CAN系统的总线有效长度,作为抽样点的位时间必须尽量提前,进而限制传输线上允许的传播延迟时间。

总的说来,应该采用较短的总线长度。

表2对比了SLI0CAN与CAN系统的总线长度,表中所用的P82C15O和P8XC592等8位单片机均由飞利浦半导体公

司制造。

可看出SLIOCAN的总线长度较CAN系统缩短了数百甚至数千米。

从另一个角度来看,SLIOCAN中两个外主节点间的最大容许距离较短,但是,即使是最短的80m相应的总线长度也足以满足小型汽车的应用。

表2在SLIOCAN和CAN中两个外主节点之间的最大容许距离

位速率

(kbit/s)

P82C150

(SLIOCAN)

P8XC592

PCA82C200(CAN)

位速率

(kbit/s)

P82C150

(SLIOCAN)

P8XC592

PCA82C200(CAN)

125

80m

530m

50

300m

1300m

100

120m

620m

20

850m

3300m

6.SLIOCAN车身控制系统的布局

SLIOCAN技术应用于汽车车身控制系统一般可在40kbit/s

位速率下操作,该位速率大于表1中A级与B级66项传输速率之和,需要增速时也可扩展至125kbit/s。

除了每隔3800位时间标定恒定传输的消息外,所有的CAN传输都属于事件驱动(状态变

化)。

总线负载是相当低的,通过使用CAN总线分析器,在改进的系统申记录下的最大总线负载才6.4%,其中包括转向信号灯接

通、重复压按座椅位置开关和大灯远光开关。

SLIO的标定帧总数

是总线负载的1.8%。

SLIOCAN系统中的这种“附加开销”与智

能的CAN网络相比差别很大。

系统布局如图2所示。

其中中央控制器P8XC592是飞利浦公司的产品,属8051系列,其基本性能如下:

RAM256,ROM16k,引脚68,I/O引脚48,全双工异步收发器UART定时/计数器3,CAN总线,10位A/D转换。

其中最主要的性能特点是具有多机通信和网

络接口功能,即有控制器区城网CAN总线接口

SLIOP32C150

图2SLIOCAN基本的车身控制系统

除了电动座椅和装在翼子板上的后视镜需作模/数转换外,大多数车身电控装置只需作数字通/断。

另外,由于SLIO备有内部模-数转换器,将用数字记录电位差计的读数,故操作速度会增加——些匕

、一二O

7.SLIOCAN网络出了故障的“对抗措施”

就总线故障而论,SLIOCAN与智能的CAN节点有相同的结果。

一旦CAN总线出现故障,各自独立的节点不能再与它的主机或其他节点相通信,在这种情况下,系统会按照预定义参数迸人低效运行方式或缓复位。

由于SLIO物理寻址的能力,无大型软件辅助也能很容易地检测出故障部位。

监视计时器可以周期地检查所有节点的状况,确保系统的完好性。

一旦某个节点发生了故障,系统将采取妥当的

“对抗措施”。

SLIOCAN总线网络最大的特点之一是有较佳的灵活性相适应性。

在汽车设计和改装中,并不需要过多地改变原车身的主要线束,这对汽车制造厂和维修企业来说,是很有吸引力的。

由于SLIOCAN系统内的微控制器已作了定时和延迟,因此,不存在继电器或定时器的磨损问题。

高侧开关灵敏半导体装置作为电源转换,这些装置与传统的熔断器相比,提供了更佳的回路保护,另外还具有在零点儿秒之内检测各种开路或短路的能力。

这些故障状况可以反馈至中央控制器P8XC592进一步对错误报警和采取妥当的"对抗措施"。

"对抗措施"包括接通制动灯作为后转向信号灯发生故障时的后备保险,或是接通后雾灯作为制动灯发生故障时的后备保险等。

SLIO曲N网络采取"对抗措施"形成的"灯光混乱",实际上是中央控制器对故障报警和对回路补偿的安全措施之一。

当与安全行车有紧密关系的制动灯或转向灯电路发生短路或开路时,不是像传统汽车那样以"熄灯"告终,而是让另外的某种灯"发亮",对前方或后方的人和车作出"本车正在转弯或制动"的"补偿警示",以减少行车事故。

与此同时,警告驱动器驱动液晶显示器,提醒司机尽快维修车辆。

至于网络出现故障后的维修思路与传统汽车不大相同,由于不存在维修继电器、定时器等,故需采用外接仪器进行诊断。

SLIO

CAN系统很容易将故障诊断仪连接到数据总线上获取全部信息,

也可补充使用数据登录器对汽车的非五常工况进行观测。

另外,与诊断软件有关的知识也能进一步增强对汽车故障的诊断能力。

8.何谓"即插即用"的SUIOCAN车身控制系统

目前的SLIOCAN车身

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1