Power from the Sun Chapter9Word格式.docx

上传人:b****3 文档编号:18338066 上传时间:2022-12-15 格式:DOCX 页数:59 大小:1.48MB
下载 相关 举报
Power from the Sun Chapter9Word格式.docx_第1页
第1页 / 共59页
Power from the Sun Chapter9Word格式.docx_第2页
第2页 / 共59页
Power from the Sun Chapter9Word格式.docx_第3页
第3页 / 共59页
Power from the Sun Chapter9Word格式.docx_第4页
第4页 / 共59页
Power from the Sun Chapter9Word格式.docx_第5页
第5页 / 共59页
点击查看更多>>
下载资源
资源描述

Power from the Sun Chapter9Word格式.docx

《Power from the Sun Chapter9Word格式.docx》由会员分享,可在线阅读,更多相关《Power from the Sun Chapter9Word格式.docx(59页珍藏版)》请在冰豆网上搜索。

Power from the Sun Chapter9Word格式.docx

Theresultinghardwareistermedthecollectorsubsystem. 

Thischapterexaminesthebasicopticalandthermalconsiderationsthatinfluencereceiverdesignandwillemphasizethermalreceiversratherthanphotovoltaicreceivers.

Alsodiscussedhereisaninterestingtypeofconcentratorcalledacompoundparabolicconcentrator(CPC). 

Thisisanon-imagingconcentratorthatconcentrateslightraysthatarenotnecessarilyparallelnoralignedwiththeaxisoftheconcentrator. 

∙Tocompletethissectionwedescribeengineeringprototypeconcentratorsthathavebeenconstructedandtested. 

Parabolicconcentratorsthatarenotcommercialproductswerechosenfordiscussion. 

Thisallowsfreediscussionwithoutconcernforrevealingproprietaryinformation. 

Inaddition,theprototypeconcentratorsdiscussedarerepresentativeoftheparabolicconcentratorsunderdevelopmentforcommercialuse,andconsiderabledesigninformationisavailable.

Performancedatafromsomeearlyprototypesarepresented. 

Thedevelopmentincludesthefollowingtopics:

∙ReceiverDesign

oReceiverSize

oReceiverHeatLoss

oReceiverSizeOptimization

∙CompoundParabolicConcentrators(CPC)

∙PrototypeParabolicTroughs

oSandiaPerformancePrototypeTrough

∙PrototypeParabolicDishes

oShenandoahDish

oJPLPDC1

∙OtherConcentratorConcepts

oFixed-MirrorSolarCollector(FMSC)

oMovingReflectorStationaryReceiver(SLATS)

oFixed-MirrorDistributedFocus(FMDF)(sphericalbowl)

∙PrototypePerformanceComparisons

Specialnotetothereader:

Theprototypehardwaredescribedinthesectionsbelowrepresentsthestate-of-the-artinthe1970´

sandearly1980´

s. 

Forupdatesoncurrentstatusofsolarconcentratorhardware,thereaderisreferredtothewebsiteofTheSunLab(combinedeffortsofSandiaNationalLabsandtheNationalRenewableEnergyLaboratorywebsite:

http:

//www.energylan.sandia.gov/sunlab/overview.htm 

andtheInternationalEnergyAgencywebsite:

//www.solarpaces.org/csp_technology.htm. 

Readersarealsoencouragedtoaccessthewebsitesofdifferenthardwaremanufacturers.

9.1 

ReceiverDesign

Thejobofthereceiveristoabsorbasmuchoftheconcentratedsolarfluxaspossible,andconvertitintousableenergy(usuallythermalenergy). 

Onceconvertedintothermalenergy,thisheatistransferredintoafluidofsometype(liquidorgas),thattakestheheatawayfromthereceivertobeusedbythespecificapplication.

Thusfarwehaveconcentratedourattentiononreflectionofincidentsolarenergyandnotbeenconcernedwiththegeometryofthereceiver. 

Therearebasicallytwodifferenttypesofreceivers-theomnidirectionalreceiverandthefocalplanereceiver.

Ratherthandealincompletegeneralityandtalkaboutthemanypossibletypesofreceiversthatcouldfallintothesetwocategories,wediscussonlytwowidelyusedreceivers,thelinearomnidirectionalreceiverandthepointcavityreceiver. 

Thiswillnotartificiallylimittheapplicabilityofthedevelopmentofthefollowingparagraphsbutwillprovideanicefocustothediscussion.

Figure9.1isasphotographofalinearomnidirectionalreceiverusedwithparabolictroughs. 

Itconsistsofasteeltube(usuallywithaselectivecoating;

seeChapter8)surroundedbyaglassenvelopetoreduceconvectionheatlosses. 

Asthename´

omnidirectional´

implies,thereceivercanacceptopticalinputfromanydirection.

Figure9.1 

Linearomnidirectionalreceiver,(a)photographofoperationalreceiver;

(b)sketchofreceiverassemblycross-section. 

CourtesyofSandiaNationalLaboratories.

Figure9.2isasketchofacavityreceiver. 

Thisisclearlynotanomnidirectionalreceiversincethelightmustenterthroughthecavityaperture(justinfrontoftheinnershieldforthisreceiver)tobeabsorbedonthecavitywalls(coiledtubesinthiscase).

Figure9.2 

Cavity(focalplane)receiver. 

Typically,theplaneofthecavityapertureisplacednearthefocusoftheparabolaandnormaltotheaxisoftheparabola. 

Thussuchareceiverissometimescalledafocalplanereceiver. 

Althoughthecavitycouldbelinearandthususedwithaparabolictrough,acavityreceiverismostcommonlyusedwithparabolicdishes. 

Figure9.3isaphotographofthissameparabolicdishcavityreceiver.

Figure9.3 

PhotographlookingintothecavityapertureofthereceiverofFigure9.2.CourtesyofSandiaNationalLaboratories

9.1.1 

ReceiverSize

OmnidirectionalReceivers-TheappropriatesizeforanomnidirectionalreceiverwasdevelopedinChapter8. 

ThediameterofatubereceiverisΔrasdefinedinEquation(8.44)(and2r1 

asshowninFigure9.1b). 

Areceiverofthissizeinterceptsallreflectedradiationwithinthestatisticalerrorlimitsdefinedbyn. 

Thisequationisreproducedhereasanaidtothereader.

(8.44)

wherepistheparabolicradius,nthenumberofstandarddeviations(i.e.definingthepercentofreflectedenergyintercepted),andσtot 

theweightedstandarddeviationofthe 

beamspreadangleforallconcentratorerrors,asdevelopedinSection8.4anddefinedbyEquation(8.43). 

Aswillbedescribedbelow,thevalueofn(i.e.thenumberofstandarddeviationsofbeamspreadinterceptedbyareceiverofsizeΔr),isdeterminedinanoptimizationprocessbasedonbalancingtheamountofinterceptedradiationandamountofheatlossfromthereceiver. 

Putinsimplifiedterms,alargerreceiverwillcapturemorereflectedsolarradiation,butwillloosemoreheatduetoradiationandconduction.

CavityReceivers-Theappropriatesizeofthecavityopening(i.e.itsaperture)isdeterminedusingthesameopticalprinciplesusedinthedevelopmentofEquation(8.44)butthenprojectingthereflectedimageontothefocalplanewherethereceiveraperturewillbelocated.

IfthebeamspreadduetoerrorsissmallinFigure9.4,theanglesα 

andβ 

areapproximately90degrees. 

Thustheprojectionoftheimagewidthontothefocalplaneis

 

(9.1)

SubstitutionintoEquation(8.44)yields

(9.2)

Figure9.4 

Sizingofcavityapertureconsideringbeamspreadingduetoerrors.

SelectionofConcentratorRimAngle-Itisinterestingtostudytheimpactofreceivertypeonthepreferredconcentratorrimangle. 

Thewholeideaofaconcentratoristoreflectthelightenergyincidentonthecollectorapertureontoassmallareceiveraspossibleinordertominimizeheatloss.

Figure9.5isaplotoftherelativeconcentrationratiosforbothcavitiesandomnidirectionalreceiversasafunctionofrimangle. 

TheconcentrationratioforthetwoconceptsistheratioofthecollectorapertureareadividedbytheareaoftheimageatthereceiverasdefinedbyEquations(8.44)and(9.2),respectively. 

Notethatthecurvefortheomnidirectionalreceiverincreasesuniformlyupto90degrees,whereasthecurveforthefocalplanereceiverincreasesuptoarimangleofabout45degreesandthendecreasesbecauseofthecosineψ 

terminthedenominatorsinEquations(9.9)and(9.10).

Figure9.5 

Variationofgeometricconcentrationratiowithrimangle.

Theimpactofthisphenomenonisthatmostconcentratorswithanomnidirectionalreceiverhaverimanglesnear90degrees. 

Ontheotherhand,concentratorswithfocalplanereceivershaverimanglesnear45degrees. 

Thecurvesshowonlytrendsforeachreceivertype,andtheirmagnituderelativetoeachotherasshowninFigure9.5isnotcorrect.

9.1.2 

ReceiverHeatLoss

LinearOmnidirectionalReceivers-TheheatlossratefromalinearomnidirectionalreceiverofthetypeshowninFigure9.1isequaltotheheatlossratefromtheoutsidesurfaceoftheglasstube. 

Thiscanbecalculatedasthesumoftheconvectiontotheenvironmentfromtheglassenvelopeplustheradiationfromtheglassenvelopetothesurroundings.

(9.3)

where:

hg=convectiveheat-transfercoefficientatoutsidesurfaceofglass

envelope(W/m2°

C)

Ag=outsidesurfaceofglassenvelope(m2)

Tg=outsidesurfacetemperatureofglassenvelope(K)

Ta=ambienttemperature(K)

σΒ 

=Stefan-Boltzmannconstant(5.6696×

10-8W/m2K4)

ε 

g=emittanceoftheglass

Fga=radiationshapefactor

Ts=skytemperature(K)(typicallyassumedtobe6Kelvinslowerthanambienttemperature)(Treadwell,1976)

Ifallthevariablescanbeeval

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 司法考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1