hightemperature highpressure PARR reactor is proposed for optimizing the extraction of phenolic文档格式.docx
《hightemperature highpressure PARR reactor is proposed for optimizing the extraction of phenolic文档格式.docx》由会员分享,可在线阅读,更多相关《hightemperature highpressure PARR reactor is proposed for optimizing the extraction of phenolic文档格式.docx(35页珍藏版)》请在冰豆网上搜索。
AbstractAbstract|Figures/TablesFigures/Tables|ReferencesReferences
Brassinosteroids(BRs)areagroupofnaturallyoccurringplantsteroidalcompoundswithwiderangingbiologicalactivity.BecauseBRscontrolseveralimportantagronomictraitssuchasfloweringtime,plantarchitecture,seedyieldandstresstolerance,thegeneticmanipulationofBRbiosynthesis,conversionorperceptionoffersauniquepossibilityofsignificantlyincreasingcropyieldsthroughbothchangingplantmetabolismandprotectingplantsfromenvironmentalstresses.GeneticmanipulationofBRactivityhasindeedledtoincreasesincropyieldby20–60%,confirmingthevalueoffurtherresearchonBRstoimproveproductivity.
ArticleOutline
Introduction
BRsignaling
BRbiosynthesisgenes
EngineeringBRlevelsandsensitivitytoincreaseyield
EngineeringBRlevelstoincreasestresstolerance
Futuredirections
Acknowledgements
References
Purchase
$31.50
127
Serenoarepens:
TheScientificBasisfortheTreatmentofBenignProstaticHyperplasia
EuropeanUrologySupplements,Volume8,Issue13,December2009,Pages887-893
FouadK.Habib
Abstract
Context
Medicaltherapiesderivedfromnaturalsourceshavebeenusedforcenturies.Manyareaseffectiveassyntheticmedications.Theuseofplant-derivedmedicationsforbenignprostatichyperplasia(BPH)isnoexception.Inparticular,extractsofSerenoarepens(SrE),thefruitoftheAmericandwarfpalm,arewidelyavailable,andtheiruseisrisingthroughouttheworld.
Objective
TheunderlyingbasisforSrEpopularitystemsfromitssafetyandtolerabilityprofile.However,despiteitsextensiveuse,itsmechanismofactionhasnotbeendefinitelyclarified.Inthispaper,weanalysethescientificbasisforSrEefficacyinthetreatmentofBPHandexplorethemechanismsbywhichitseffectsareinduced.
Evidenceacquisition
ThisliteraturereviewfocusesontheactionsofthelipidosterolicSrEonahostoftargets.Severalcellularandmoleculartechniqueshavebeenusedtocharacterisethebiologicpathwaysthatmaymediatetheseactions.MorphologicstudieshavebeencarriedouttoidentifythechangesofprostateultrastructureandtodeterminemodificationsthatmayshedlightonthemechanismsunderlyingSrEefficacy.
Evidencesynthesis
SelectivityoftheactionofSrEfortheprostatehasbeendemonstrated.Thereareseveralmorphologicchanges,andtheseareaccompaniedbyanincreaseintheapoptoticindexofthegland,alongwithinhibitionoftheactivityofthe5α-reductaseisoenzymes.Thedrugalsoactsonanumberofotherbiologicsystemsandshowsacapacitytomoderatetheandrogenic,apoptotic,andinflammatorypathwaysofthecell.Thesepathwayshavebeenimplicatedinthehyperplasticprocess.
Conclusions
TheinteractionbetweenprostatecellsandSrEismanifestatseverallevelsofthegland'
sbiologicalspectrumandresultsinantiandrogenic,anti-inflammatory,andproapoptoticeffects.TheseeffectsmayaccountforthebeneficialresponsetriggeredinsomepatientswithBPHtreatedwithSrE.
1.Introduction
2.Evidenceacquisition
3.Evidencesynthesis
3.1.OrganspecificityofSerenoarepens
3.2.AntiandrogenicactivitiesofSerenoarepens
3.3.Anti-inflammatorypropertiesofSerenoarepens
3.4.TheproapoptoticcharacteristicsofSerenoarepens
3.5.AreallbrandsofSerenoarepensequal?
4.Conclusions
Conflictsofinterest
Fundingsupport
TakeHomeMessage
Serenoarepens(sawpalmetto)extractsarecomplexmixturesofcompoundsthatactsimultaneouslyonseveralbiologicpathwaysknowntobeassociatedwiththedevelopmentofbenignprostatichyperplasia(BPH)inman.ReversaloftheprohyperplasticpathwaysbythedrugaccountsforitsclinicalefficacyinthetreatmentofBPH.
128
Thefateandtoxicityoftheflavonoidsnaringeninandformononetininsoil
OriginalResearchArticle
SoilBiologyandBiochemistry,Volume40,Issue2,February2008,Pages528-536
LizJ.Shaw,JohnE.Hooker
Theflavonoidclassofplantsecondarymetabolitesplayamultifunctionalroleinbelow-groundplant–microbeinteractionswiththeirbestknownfunctionassignalsinthenitrogenfixinglegume–rhizobiasymbiosis.Flavonoidsenterrhizospheresoilasaresultofrootexudationandsenescencebutlittleisknownabouttheirsubsequentfateorimpactsonmicrobialactivity.Therefore,thepresentstudyexaminedthesorptivebehaviour,biodegradationandimpactondehydrogenaseactivity(asdeterminedbyiodonitrotetrazoliumchloridereduction)oftheflavonoidsnaringeninandformononetininsoil.Organiccarbonnormalisedpartitioncoefficients,log
Koc,of3.12(formononetin)and3.19(naringenin)wereestimatedfromsorptionisothermsand,aftercomparisonwithliteraturelog
Kocvaluesforcompoundswhosesoilbehaviourisbettercharacterised,thetestflavonoidsweredeemedtobemoderatelysorbed.Naringenin(spikedat50
μg
g−1)wasbiodegradedwithoutadetectablelagphasewithconcentrationsreducedto0.13±
0.01
g−1attheendofthe96
htimecourse.Biodegradationofformononetinproceededafteralagphaseof
24
hwithconcentrationsreducedto4.5±
1%ofthesterilecontrolafter72
h.Mostprobablenumber(MPN)analysisrevealedthatpriortotheadditionofflavonoids,thesoilcontained5.4×
106
MPN
g−1(naringenin)and7.9×
105
g−1(formononetin)catabolicmicrobes.Formononetinconcentrationhadnosignificant(p>
0.05)effectonsoildehydrogenaseactivity,whereasnaringeninconcentrationhadanoverallbutnon-systematicimpact(p=0.045).Theseresultsarediscussedwithreferencetolikelytotalandbioavailableconcentrationsofflavonoidsexperiencedbymicrobesintherhizosphere.
2.Materialsandmethods
2.1.Soilandflavonoids
2.2.Constructionofflavonoidsorptionisotherms
2.3.Flavonoidbiodegradation
2.4.Mostprobablenumberdeterminations
2.5.Dehydrogenaseassay
2.6.Highperformanceliquidchromatography(HPLC)
3.Results
3.1.Adsorptionisotherms
3.2.Biodegradationandmostprobablenumberanalysis
3.3.Naringeninandformononetinimpactsondehydrogenaseactivity
4.Discussion
4.1.Sorption
4.2.Biodegradationofnaringeninandformononetin
4.3.Toxicity
5.Conclusion
Appendix:
.Calculationofatotalsoilconcentrationfornaringeninfromanaqueousphaseconcentration,takingintoaccountnaringeninpartitioningbehaviourinsoil
129
CatalyticremovalofNOandPAHsoverAC-supportedcatalystsfromincinerationfluegas:
Bench-scaleandpilot-planttests
ChemicalEngineeringJournal,InPress,CorrectedProof,Availableonline6March2011
Hui-HsinTseng,Chi-YuanLu,Feng-YimChang,Ming-YenWey,Han-TsungCheng
Fordioxinremovalfromincinerationfluegas,thecommonmethodisabsorptionusingactivatedcarbon(AC).Inordertoreducetheconsumptionofenergy,itisworthtoevaluatethedestructionremovalefficiency(DRE)ofNOandpolycyclicaromatichydrocarbons(PAHs)overACwithafewmetalsloadingwhiledioxinisphysicalabsorbedbyAC.Asaresult,inthepresentwork,theuseofACasacatalystsupportforsimultaneousNOreductionandPAHscatalyticoxidationwasinvestigatedasanalternativetechnologytoimproveincineratorprocesses.ThisstudyexaminedtheselectiveremovalofNOandPAHsfromincinerationfluegascontainingO2,N2,CO2,H2O,NO,organiccompoundsandflyashoverM/ACcatalysts(M
=
Fe,Co,Ni,andCu)usingbench-scaleandpilot-planttests.InvestigationsontheeffectsoftheincinerationfluegascompositionandthestructureofthemetalactivesiteonNOandPAHsconversionrevealedthattheconversionactivityincreasesastheatomicnumberofthetransitionmetalsincrease,exceptforNi.CarbonmonoxidecanactasareductanttoincreasetheNOremovalefficiency.TheM/ACcatalystsshowedhighreactivityforsimultaneousPAHsoxidationandNOreduction.TheresultsprovideusefulinformationforthedesignandapplicationofACinjectionorselectivecatalystreductionsystemsforwasteincinerationplants.
2.Experimental
2.1.Catalystpreparation
2.2.Catalystcharacterization
2.3.Bench-scaletesting
2.4.Pilot-planttesting
3.Resultsanddiscussion
3.1.Catalystcharacterization
3.2.Bench-scaletesting:
effectofthechemicalstateoftheactivesite
3.3.Bench-scaletesting:
effectofgascomposition
3.4.Bench-scaletesting:
poisoningofM/ACcatalysts
3.5.Pilot-planttesting
130
ChangesinapolarmetabolitesduringinvitroorganogenesisofPancratiummaritimum
PlantPhysiologyandBiochemistry,Volume48,Issues10-11,October-November2010,Pag