电气专业毕业设计中英文对照翻译Word文档格式.docx
《电气专业毕业设计中英文对照翻译Word文档格式.docx》由会员分享,可在线阅读,更多相关《电气专业毕业设计中英文对照翻译Word文档格式.docx(15页珍藏版)》请在冰豆网上搜索。
3.2DigitalNumberSystems
Themostcommonnumbersystemusedtodayisthedecimalsystem,inwhich10digitsareusedforcounting.Thenumberofdigitsinthesystemiscalleditsbase(orradix).Thedecimalsystem,therefore,hasabaseof10.
Numberingsystemshaveaplacevalue,whichreferstotheplacementofadigitwithrespecttoothersinthecountingprocess.Thelargestdigitthatcanbeusedinaspecificplaceorlocationisdeterminedbythebaseofthesystem.Inthedecimalsystemthefirstpositiontotheleftofthedecimalpointiscalledtheunitsplace.Anydigitfrom0to9canbeusedinthisplace.Whennumbervaluesgreaterthan9areused,theymustbeexpressedwithtwoormoreplaces.Thenextpositiontotheleftoftheunitsplaceinadecimalsystemisthetensplace.Thenumber99isthelargestdigitalvaluethatcanbeexpressedbytwoplacesinthedecimalsystem.Eachplaceaddedtotheleftextendsthenumbersystembyapowerof10.
Anynumbercanbeexpressedasasumofweightedplacevalues.Thedecimalnumber2583,forexample,isexpressedas(2×
1000)+(5×
100)+(8×
10)+(3×
1).
Thedecimalnumbersystemiscommonlyusedinourdailylives.Electronically,however,itisratherdifficulttouse.Eachdigitofabase10systemwouldrequireaspecificvalueassociatedwithit,soitwouldnotbepractical.
3.2.1BinaryNumberSystem
Electronicdigitalsystemsareordinarilythebinarytype,whichhas2asitsbase.Onlythenumbers0or1areusedinthebinarysystem.Electronically,thevalueof0canbeassociatedwithalow-voltagevalueornovoltage.Thenumber1canthenbeassociatedwithavoltagevaluelargerthan0.Binarysystemsthatusethesevoltagevaluesaresaidtohavepositivelogic.Negativelogic,bycomparison,hasavoltageassignedto0andnovoltagevalueassignedto1.Positivelogicisusedinthischapter.
Thetwooperationalstatesofabinarysystem,1and0,arenaturalcircuitconditions.Whenacircuitisturnedofforhasnovoltageapplied,itisintheoff,or0,state.Anelectricalcircuitthathasvoltageappliedisintheon,or1,state.ByusingtransistororICs,itiselectronicallypossibletochangestatesinlessthanamicrosecond.Electronicdevicesmakeitpossibletomanipulatemillionsof0sandisinasecondandthustoprocessinformationquickly.
Thebasicprinciplesofnumberingusedindecimalnumbersapplyingeneraltobinarynumbers.Thebaseofthebinarysystemis2,meaningthatonlythedigits0and1areusedtoexpressplacevalue.Thefirstplacetotheleftofthebinarypoint,orstartingpoint,representstheunits,oris,location.Placestotheleftofthebinarypointarethepowersof2.Someoftheplacevaluesinbase2are2º
=1,2¹
=2,2²
=4,2³
=8,2⁴=16,25=32,and26=64.
Whenbasesotherthan10areused,thenumbersshouldhaveasubscripttoidentifythebaseused.Thenumber100₂isanexample.
Thenumber100₂(read“one,zero,zero,base2”)isequivalentto4inbase10,or410.Startingwiththefirstdigittotheleftofthebinarypoint,thisnumberhasvalue(0×
20)+(0×
21)+(1×
22).Inthismethodofconversionabinarynumbertoanequivalentdecimalnumber,writedownthebinarynumberfirst.Startingatthebinarypoint,indicatethedecimalequivalentforeachbinaryplacelocationwherea1isindicated.Foreach0inthebinarynumberleaveablankspaceorindicatea0'
Addtheplacevaluesandthenrecordthedecimalequivalent.
Theconversionofadecimalnumbertoabinaryequivalentisachievedbyrepetitivestepsofdivisionbythenumber2.Whenthequotientisevenwithnoremainder,a0isrecorded.Whenthequotienthasaremainder.as1isrecorded.Thedivisionprocesscontinuesuntilthequotientis0.Thebinaryequivalentconsistsoftheremaindervaluesintheorderlasttofirst.
3.2.2Binary-codedDecimal(BCD)NumberSystem
Whenlargenumbersareindicatedbybinarynumbers,theyaredifficulttouse.Forthisreason,theBinary-CodedDecimal(BCD)methodofcountingwasdevised.Inthissystemfourbinarydigitsareusedtorepresenteachdecimaldigit.Toillustratethisprocedure,thenumber105,isconvertedtoaBCDnumber.Inbinarynumbers,10510=10001012.
ToapplytheBCDconversionprocess,thebase10numberisfirstdividedintodigitsaccordingtoplacevalues.Thenumber10510givesthedigits1-0-5.Convertingeachdigittobinarygives0001-0000-0101BCD.Decimalnumbersupto99910maybedisplayedbythisprocesswithonly12binarynumbers.ThehyphenbetweeneachgroupofdigitsisimportantwhendisplayingBCDnumbers.
ThelargestdigittobedisplayedbyanygroupofBCDnumbersis9.Sixdigitsofanumber-codinggrouparenotusedatallinthissystem.Becauseofthis,theoctal(base8)andthehexadecimal(base16)systemsweredevised.DigitalcircuitsprocessnumbersinbinaryformbutusuallydisplaytheminBCD,octal,orhexadecimalform.
3.2.3OctalNumberSystem
Theoctal(base8)numbersystemisusedtoprocesslargenumbersbydigitalcircuits.Theoctalsystemofnumbersusesthesamebasicprinciplesasthedecimalandbinarysystems.
Theoctalnumbersystemhasabaseof8.Thelargestnumberusedinabase8systemis7.Theplacevaluesstartingattheleftoftheoctalpointarethepowersofeight:
80=1,81=8,82=64,83=512,84=4096,andsoon.
Theprocessofconvertinganoctalnumbertoadecimalnumberisthesameasthatusedinthebinary-to-decimalconversionprocess.Inthismethod,however,thepowersof8areusedinsteadofthepowersof2.Thenumberforchanging3828toanequivalentdecimalis25810.
ConvertinganoctalnumbertoanequivalentbinarynumberissimilartotheBCDconversionprocess.Theoctalnumberisfirstdividedintodigitsaccordingtoplacevalue.Eachoctaldigitisthenconvertedintoanequivalentbinarynumberusingonlythreedigits.
Convertingadecimalnumbertoanoctalnumberisaprocessofrepetitivedivisionbythenumber8.Afterthequotienthasbeendetermined,theremainderisbroughtdownastheplacevalue.Whenthequotientisevenwithnoremainder,a0istransferredtotheplaceposition.Thenumberforconverting409810tobase8is100028.
Convertingabinarynumbertoanoctalnumberisanimportantconversionprocessofdigitalcircuits.Binarynumbersarefirstprocessedataveryhighspeed.Anoutputcircuitthenacceptsthissignalandconvertsittoanoctalsignaldisplayedonareadoutdevice.
Assumethatthenumber1101001002istohechangedtoanequivalentoctalnumber.Thedigitsmustfirstbedividedintogroupsofthree,startingattheoctalpoint.Eachbinarygroupisthenconvertedintoanequivalentoctalnumber.Thesenumbersarethencombined,whileremainingintheirsamerespectiveplaces,torepresenttheequivalentoctalnumber.
3.2.4HexadecimalNumberSystem
Thehexadecimalnumbersystemisusedindigitalsystemstoprocesslargenumbervalues.Thebaseofthissystemis16,whichmeansthatthelargestnumberusedinaplaceis15.Digitsusedbythissystemarethenumbers0-9andthelettersA-F.ThelettersA-Pareusedtodenotethedigits10-15,respectively.Theplacevaluestotheleftofthehexadecimalpointarethepowersof16:
160=1,161=16,162=256,l63=4096,164=65536,andsoon.
Theprocessofchangingahexadecimalnumbertoadecimalnumberissimilartothatoutlinedforotherconversions.Initially,ahexadecimalnumberisrecordedinproperdigitalorder.Theplacevalues,orpowersofthebase,arethenpositionedundertherespectivedigitsinstep2.Instep3,thevalueofeachdigitisrecorded.Thevaluesinsteps2and3arethenmultipliedtogetherandadded.Thesumgivesthedecimalequivalentvalueofahexadecimalnumber.
Theprocessofchangingahexadecimalnumbertoabinaryequivalentisasimplegroupingoperation.Initially,thehexadecimalnumberisseparatedintodigits.Eachdigitisthenconvertedtoabinarynumberusingfourdigitspergroup.Thebinarygroupiscombinedtoformtheequivalentbinarynumber.
Theconversionofadecimalnumbertoahexadecimalnumberisachievedbyrepetitivedivision,aswithothernumbersystems.Inthisprocedurethedivisionisby16andremainderscanbeaslargeas15.
Convertingabinarynumbertoahexadecimalequivalentisthereverseofthehexadecimaltobinaryprocess.Initially,thebinarynumberisdividedingroupsoffourdigits,startingatthehexadecimalpoint.Eachnumbergroupisthenconvertedtoahexadecimalvalueandcombinedtoformthehexadecimalequivalentnumber.
3.3BinaryLogicCircuits
Indigitalcircuit-designapplicationsbinarysignalsarefarsuperiortothoseoftheoctal,decimal,orhexadecimalsystems.Binarysignalscanbeprocessedveryeasilythroughelectroniccircuitry,sincetheycanberepresentedbytwostablestatesofoperation.Thesestatescanbeeasilydefinedasonoroff,1or0,upordown,voltageornovolta